University of Sussex
Browse

File(s) not publicly available

ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation

journal contribution
posted on 2023-06-07, 21:10 authored by Aaron Goodarzi
The p53 tumor suppressor protein preserves genome integrity by regulating growth arrest and apoptosis in response to DNA damage. In response to ionizing radiation (IR), ATM, the gene product mutated in ataxia telangiectasia, stabilizes and activates p53 through phosphorylation of Ser15 and (indirectly) Ser20. Here we show that phosphorylation of p53 on Ser46, a residue important for p53 apoptotic activity, as well as on Ser9, in response to IR also is dependent on the ATM protein kinase. IR-induced phosphorylation at Ser46 was inhibited by wortmannin, a phosphatidylinositol 3-kinase inhibitor, but not PD169316, a p38 MAPK inhibitor. p53 C-terminal acetylation at Lys320 and Lys382, which may stabilize p53 and activate sequence-specific DNA binding, required Ser15 phosphorylation by ATM and was enhanced by phosphorylation at nearby residues including Ser6, Ser9, and Thr18. These observations, together with the proposed role of Ser46 phosphorylation in mediating apoptosis, suggest that ATM is involved in the initiation of p53-dependent apoptosis after IR in human lymphoblastoid cells.

History

Publication status

  • Published

Journal

Journal of Biological Chemistry

ISSN

0021-9258

Publisher

American Society for Biochemistry and Molecular Biology

Issue

15

Volume

277

Page range

12491-4

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC