First principles calculations of hydrogen aggregation in silicon

Martsinovich, N, Rosa, A L, Heggie, M I and Briddon, P R (2004) First principles calculations of hydrogen aggregation in silicon. Defect and Diffusion Forum, 230-23. pp. 81-91. ISSN 10120386

Full text not available from this repository.

Abstract

We use DFT calculations to investigate the problem of hydrogen aggregation in silicon. We study atomic structures of finite hydrogen aggregates containing four or more hydrogen atoms. Beyond four hydrogen atoms, complexes consisting of Si-H bonds are likely to form, rather than aggregates of H2 molecules, which are the most stable diatomic hydrogen complex. Our calculations show that the basic structural unit of such complexes is a hydrogenated dislocation loop, which is formed spontaneously by a structural transformation of two H2* complexes. Hydrogen-induced formation of dislocation loops may account for the experimental observations of dislocation loops in proton-implanted or hydrogen plasma-treated silicon. We indicate the routes leading from H2* aggregates and hydrogenated dislocation loops to two-dimensional hydrogen-induced platelets. We discuss the effect of hydrogen-catalysed formation of dislocation loops on the plasticity of silicon

Item Type: Article
Schools and Departments: School of Life Sciences > Chemistry
Depositing User: Malcolm Heggie
Date Deposited: 06 Feb 2012 18:43
Last Modified: 29 Mar 2012 05:35
URI: http://sro.sussex.ac.uk/id/eprint/17978
📧 Request an update