University of Sussex
Browse

File(s) not publicly available

Dehydration stability of amyloid fibrils studied by AFM

journal contribution
posted on 2023-06-07, 20:11 authored by Gjertrud Maurstad, Marcus Prass, Louise SerpellLouise Serpell, Pawel Sikorski
Atomic force microscopy was used to investigate the stability of dehydrated amyloid fibrils formed by human islet polypeptide (IAPP) and A beta(1-42) peptides. IAPP amyloid fibrils were imaged in liquid (hydrated state) and in air (dehydrated). In addition, fibrils dried on the mica surface were rehydrated and re-examined both in liquid and in air (after consecutive redrying). As reported previously, the initial drying process does not result in any major change in the amyloid appearance and the dimensions of the fibrils are preserved. However, when once-dried samples are rehydrated, fibril stability is lost. The fibrils disintegrate into small particles that are attached to the mica surface. This process is further confirmed by studies of the rehydrated samples after drying, on which the morphology of the fibrils is clearly changed. Similar behavior is observed for A beta(1-42) amyloid fibrils, which are apparently stable on first drying, but disintegrate on rehydration. The observed change indicates that dehydration is causing a change in the internal structure of the amyloid fibrils. This has important implications for studies of amyloid fibrils by other techniques. Due to the potential influence of hydration and sample history on amyloid structure, preparation and study of amyloid samples with controlled humidity requires more consideration.

History

Publication status

  • Published

Journal

European Biophysics Journal

ISSN

0175-7571

Publisher

Springer Verlag

Issue

8

Volume

38

Page range

1135-1140

Department affiliated with

  • Biochemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC