Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus

Soro, A., Field, J., Bridge, C., Cardinal, S. C. and Paxton, R. J. (2010) Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Molecular Biology, 19 (16). pp. 3351-3363. ISSN 0962-1083

Full text not available from this repository.

Abstract

Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its Holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, P < 0.001). The Irish Sea acts as physical barrier to gene flow (partial Mantel test r = 0.453, P < 0.01), indicating that geography, rather than expression of solitary or social behaviour (partial Mantel test r = -0.238, P = 0.053), had a significant effect on the genetic structure of H. rubicundus across the British Isles. Although we cannot reject the hypothesis of a genetic underpinning to differences in solitary and eusocial phenotypes, our data clearly demonstrate a lack of reproductive isolation between the two social forms.

Item Type: Article
Schools and Departments: School of Life Sciences > Evolution, Behaviour and Environment
Depositing User: Jeremy Field
Date Deposited: 06 Feb 2012 18:20
Last Modified: 26 Mar 2012 15:01
URI: http://sro.sussex.ac.uk/id/eprint/15876
📧 Request an update