Drosophilia Shaking-B protein forms gap junctions in paired Xenopus oocytes.

Phelan, Pauline, Stebbings, Lucy A, Baines, Richard A, Bacon, Jonathan P, Davies, Jane A and Ford, Chris (1998) Drosophilia Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature, 391. pp. 181-184. ISSN 0028-0836

Full text not available from this repository.


In most multicellular organisms direct cell¿cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions1,2. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins3, 4, 5, 6, 7, 8, 9. shaking-B and eat-5 are required for the formation of functional gap junctions8,10. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.

Item Type: Article
Additional Information: First identification of gap junction proteins in invertebrates.
Schools and Departments: School of Life Sciences > Biology and Environmental Science
Depositing User: Jonathan Bacon
Date Deposited: 06 Feb 2012 18:16
Last Modified: 20 Mar 2012 09:39
URI: http://sro.sussex.ac.uk/id/eprint/15575
📧 Request an update