University of Sussex
Browse

File(s) not publicly available

Modulation of serotononergic neurotransmission by nitric oxide

journal contribution
posted on 2023-06-07, 19:19 authored by Volko A Straub, James Grant, Michael O'Shea, Paul R Benjamin
Nitric oxide (NO) and serotonin (5-HT) are two neurotransmitters with important roles in neuromodulation and synaptic plasticity. There is substantial evidence for a morphological and functional overlap between these two neurotransmitter systems, in particular the modulation of 5-HT function by NO. Here we demonstrate for the first time the modulation of an identified serotonergic synapse by NO using the synapse between the cerebral giant cell (CGC) and the B4 neuron within the feeding network of the pond snail Lymnaea stagnalis as a model system. Simultaneous electrophysiological recordings from the pre- and postsynaptic neurons show that blocking endogenous NO production in the intact nervous system significantly reduces the B4 response to CGC activity. The blocking effect is frequency dependent and is strongest at low CGC frequencies. Conversely, bath application of the NO donor DEA/NONOate significantly enhances the CGC-B4 synapse. The modulation of the CGC-B4 synapse is mediated by the soluble guanylate cyclase (sGC)/cGMP pathway as demonstrated by the effects of the sGC antagonist 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). NO modulation of the CGC-B4 synapse can be mimicked in cell culture, where application of 5-HT puffs to isolated B4 neurons simulates synaptic 5-HT release. Bath application of diethylamine NONOate (DEA/NONOate) enhances the 5-HT induced response in the isolated B4 neuron. However, the cell culture experiment provided no evidence for endogenous NO production in either the CGC or B4 neuron suggesting that NO is produced by an alternative source. Thus we conclude that NO modulates the serotonergic CGC-B4 synapse by enhancing the postsynaptic 5-HT response. Copyright © 2007 The American Physiological Society.

History

Publication status

  • Published

Journal

Journal of Neurophysiology

ISSN

0022-3077

Issue

2

Volume

97

Page range

1088-1099

Pages

12.0

Department affiliated with

  • Neuroscience Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC