APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/15176/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
APLF (C2orf13) Is a Novel Human Protein Involved in the Cellular Response to Chromosomal DNA Strand Breaks

Natasha Iles, Stuart Rulten, Sherif F. El-Khamisy and Keith W. Caldecott

Published Ahead of Print 12 March 2007.

Updated information and services can be found at: http://mcb.asm.org/content/27/10/3793

REFERENCES

These include:

This article cites 34 articles, 15 of which can be accessed free at: http://mcb.asm.org/content/27/10/3793#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more*

CORRECTIONS

An erratum has been published regarding this article. To view this page, please click here

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
APLF (C2orf13) Is a Novel Human Protein Involved in the Cellular Response to Chromosomal DNA Strand Breaks

Natasha Iles,† Stuart Rulten,† Sherif F. El-Khamisy,1,2 and Keith W. Caldecott1*

Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, Sussex BN25 3EU, United Kingdom,1 and Biochemistry Department, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt.

Received 5 December 2006/Returned for modification 4 January 2007/Accepted 5 March 2007

Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casine kinases 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H2O2 or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoMA cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.

DNA single- and double-strand breaks are induced through a variety of ways, including the direct attack of deoxyribose by reactive oxygen species. DNA strand breaks can pose a considerable threat if not rapidly repaired or responded to appropriately, as indicated by the increased genetic instability, cancer frequency, or neurodegenerative pathology observed in diseases in which such processes are absent or attenuated. While the overall mechanisms by which DNA single- and double-strand breaks are repaired are very different, the repair of these end processing activities to restore damaged DNA termini to 3′ hydroxyl and 5′ phosphate configurations, and in the final repair step, all DNA breaks require a DNA ligase to reestablish the integrity of the phosphodiester backbone.

DNA end processing is perhaps the most enzymatically diverse step of DNA strand break repair, primarily because of the broad range of termini that can arise. One enzyme implicated in the repair of oxidative DNA termini at both DNA single- and double-strand breaks is polynucleotide kinase (PNK) (10, 33). PNK associates with the DNA single-strand break repair (SSBR) and double-strand break repair (DSBR) protein complexes through direct interaction with casixinase 2 (CK2)-phosphorylated XRCC1 and XRCC4, respectively (16, 21). These interactions are mediated through a divergent forkhead-associated (FHA) domain in PNK that can specifically target CK2-phosphorylated peptides. Intriguingly, the protein aprataxin, which is mutated in the neurodegenerative disease ataxia-oculomotor apraxia type 1, possesses a similar FHA domain and binds the same CK2-phosphorylated regions of XRCC1 and XRCC4 (6, 11, 12–14, 22, 25). Aprataxin is also an end processing enzyme, repairing abortive 5′ AMP intermediates of DNA ligase activity (1). In the current study, we identify a third member of the aprataxin- and PNK-like FHA domain family which we denote APLF (aprataxin- and PNK-like factor). We demonstrate that APLF is a novel component of the cellular response to chromosomal DNA single- and double-strand breaks.

MATERIALS AND METHODS

DNA constructs and recombinant proteins. To create pGBK7-APLF, the human APLF open reading frame (ORF) was amplified from the C2orf13 IMAGE clone 6042653 (MRC GeneService) by PCR using the primers 5′-AAAA CCAATGGCAATGTCCGGGGGCTTCGAGCTG-3′ (the NcoI site and the APLF start codon are underlined) and 5′-TTGAATTCGGCAGATATGACTACGAGAA-3′ (the EcoRI site and the stop codon are underlined) and subcloned into the NcoI/EcoRI sites of pGBK7 (Clontech) To create pCD2E-My-His-APLF, the APLF ORF was amplified from IMAGE clone 6042653 by PCR using the primers 5′-AAAA GATATCCTCGTCGACATATGACTA CAGAA-3′ (the EcoRI site and the stop codon are underlined) and subcloned into the EcoRI sites of pGBK7 (Chontech). To create pcD2E-His-Myc-APLF, the APLF ORF was amplified from IMAGE clone 6042653 by PCR using the primers 5′-AAAAGGATATCCTCGACATATGACTA CAGAA-3′ (the EcoRI site and the stop codon are underlined) and subcloned into the NcoI/EcoRI sites of pGBK7 (Clontech). To create pET16b-APLF, a fragment encoding APLF was removed from pGBK7-APLF and subcloned into pET16b (Novagen) by using NdeI and BamHI. To create pET16b-APLF, a fragment encoding APLF was removed from pGBK7-APLF and subcloned into pET16b (Novagen) by using NdeI and BamHI. To create pET16b-APLF, a fragment encoding APLF was removed from pGBK7-APLF and subcloned into pET16b (Novagen) by using NdeI and BamHI. To create pET16b-APLF, a fragment encoding APLF was removed from pGBK7-APLF and subcloned into pET16b (Novagen) by using NdeI and BamHI.
encode the amino-terminal region of APLF. To create pET16b-APLF, pET16b-APLF was cut with Sphl and the resulting 3’ overhang filled in with Klenow fragment. A 0.5-kb fragment encoding the C-terminal region of APLF was then released with BamHI and subcloned into the blunt-ended NdeI/BamHI sites of pET16b. To create pEYPF-C1-APLF, the ORF was amplified from IMAGE clone clone 6042603 by PCR using the primers 5’-AAAGAATTCTAGTTC GGGGCGTCTCGAGGCTG-3’ (the EcoRI site and the APLF start codon are underlined) and 5’-AAAGAATTCTAGTTC GAGAGTATTTTTTTTCTCAGGACC-3’ (the EcoRI site and the stop codon are underlined) and subcloned into the EcoRI site of pEYPF-C1 (Clontech). To create pEYPF-C1-APLF(Δ379) (pET16b-APLF(Δ379)), the ORF in pEYPF- C1-APLF was mutated by site-directed mutagenesis using a QuikChange mutagenesis kit and the appropriate primers (Stratagene). To create pEYPF-nls-APLF, pEYPF-nls-APLF(Δ75), and pEYPF-nls-APLF(Δ75Δ166), the cDNA sequence 403–404) large T-antigen nuclear localization signal was engineered into the relevant fusion vector between the APLF sequence and the N-terminal yellow fluorescent protein (YFP) tag by subcloning the annealed oligonucleotides 5’-TCGACGCTTACAAATGACGAGGATGC-3’ and 5’-AGCTGTTGGCCTGCTTGGCACCTAGG-3’ (the Sall site and the stop codon are underlined) and subcloned into the EcoRI sites of pET16b and pET28a. Recombinant His-XRC1, His-XRC1(Δ196), and His-XRC1(Δ196)Δ75Δ166 were expressed in and purified from bacteria (see above) was phosphorylated with CK2 at 30°C. To create His-APLF and His-XRC1(Δ27) constructs, His-APLF and His-XRC1(Δ27) were expressed in and purified from bacteria (see above). The purified proteins were denatured and renatured by sequential incubations (10 min each) with 3 M urea and 0.5 M Tris-HCl, pH 8.0, and then dialyzed (30 min) at 30°C. Mock phosphorylation reactions lacked CK2 or XRCC1, as indicated. For far-Western blotting, 3–4 µg of full-length recombinant His-APLF, His-APLF(Δ166), or His-APLF(Δ379) in binding buffer at 4°C overnight. The membranes were stained with Ponceau S to confirm equal loading and transfer and then destained. Proteins were denatured and renatured by sequential incubations (10 min each) with decreasing concentrations (6 M to 0.19 M) of guanidine-HCl essentially as described previously (23). Membranes were then incubated at 4°C overnight with 2 ml of 1% NFDMHYB100 containing recombinant XRC1-XIs (10 µg) prephosphorylated in 90-µl reaction mixtures at (30°C for 30 min) containing 10 mM MgCl2, 1 mM ATP, 13.3 mM HEPEs, pH 8, 50 mM NaCl, 0.67 mM DTT, and rat liver CK2 (kindly provided by Flavio Maggio and Lorenzo Pintori). Mock phosphorylation reactions lacked CK2 or XRC1-XIs, as indicated. Membranes were then washed with 1% NFDMHYB100 and the membranes incubated with anti-XRC1 polyclonal antibody (SK3188) at a dilution of 1 in 1,000 in 1% NFDMHYB100 at room temperature for 2 h. The membranes were then washed (three times for 5 min each) with 1% NFDMHYB100 and incubated with goat anti-rabbit horseradish peroxidase-conjugated secondary antibody at a dilution of 1 in 5,000 in 1% NFDMHYB100 at room temperature for 30 min. Following further washes (three 10-min washes) with 1% NFDMHYB100, antibody complexes were detected by enhanced chemiluminescence (ECL Plus; Amersham Biosciences) and autoradiography.

Aliquot 30 µg of full-length recombinant His-APLF, His-APLF(Δ166), or His-APLF(Δ379) in binding buffer containing 2% NFDM and affinity-purified anti-APLF (SK3595) at a dilution of 1 in 500 at room temperature for 4 h. Blots were then washed (three times for 5 min each) with binding buffer lacking NFDM and incubated with 5 µg of full-length recombinant His-APLF, His-APLF(Δ166), or His-APLF(Δ379) in binding buffer at 4°C overnight. Blots were then washed (three times for 5 min each) in binding buffer and incubated in binding buffer containing 2% NFDM and affinity-purified anti-APLF (SK3595) at a dilution of 1 in 500 at room temperature for 4 h. These blots were then washed (three times for 10 min each) in binding buffer and incubated in binding buffer containing 2% NFDM and goat anti-rabbit horseradish peroxidase-conjugated secondary antibody at a dilution of 1 in 5,000 at room temperature for 1 h. Finally, following further washes in binding buffer (three 5-min washes), antibody complexes were detected by enhanced chemiluminescence (ECL Plus; Amersham Biosciences) and autoradiography. SK3595 was raised by Eurogentec against recombinant human APLF and XRC1 from E. coli and insect cells, respectively, and were affinity purified against the appropriate recombinant proteins from E. coli.

Two yeast-hybrid analyses. Saccharomyces cerevisiae Y190 cells were transformed with the indicated pACT and PGKBT7 constructs and transformants selected on minimal medium plates (glucose plus yeast nitrogen base without amino acids) additionally containing adenine and histidine. Pooled populations of transformants were streaked onto two minimal medium plates with adenine and histidine and one minimal medium plate with adenine and 50 mM 3-amino-1,2,4-triazole. The activation of the His3 reporter gene was indicated by comparative growth on minimal medium plates containing adenine and 3-amino-1,2,4-triazole and minimal medium plates containing adenine and histidine after 4 to 6 days at 30°C. The activation of the β-galactosidase (β-Gal) reporter gene was determined by qualitative X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) assays on colony filter lifts from minimal medium plates containing adenine and histidine. Quantitative β-Gal assays were conducted essentially as described by Clontech (Yeast Protocols Handbook). Equivalent expression levels of DNA binding domain or activation domain fusion proteins were confirmed by Western blotting both for cell cultures employed for filter lift β-Gal assays and for quantitative β-Gal assays. Cell extracts were prepared in cracking buffer (6 M urea, 5% [wt/vol] SDS, 40 mM Tris-HCl [pH 6.8], 0.1 mM EDTA, 0.4 mM β-mercaptoethanol, 1% (vol/vol) glycerol, 0.5% protease inhibitor cocktail [Sigma]) and fractionated by SDS-PAGE, and β-galactosidase (β-Gal) was detected by immunoblotting with anti-β-Gal monoclonal antibody (BAB) (Cell Signaling Technology) and DNA binding domain fusion proteins by immunoblotting with polyclonal anti-GAL4 activation domain antibody (Upstate Biotechnology). Washed membranes were then incubated with the appropriate horseradish peroxidase-conjugated secondary antibody (Dako) followed by bound antibodies visualized using enhanced chemiluminescence (Amersham Biosciences).

Immunoprecipitations. For immunoprecipitation experiments, ~3 × 108 HeLa cells were transiently transfected with pCI3E vector or pCI3-E-Myc-APLF by using GeneJuice transfection reagent (Novagen) and pooled populations of transfected cells were selected in medium containing G418 (0.8 mg/ml) for 5 days. Alternatively, ~3 × 107 A549 cells were stably transfected with pCI3E and either empty pSUPER or pSUPER encoding the APLF RNA interference (RNAi) sequence GAAGAAATCTGCAAAGATA (pSUPER-APLF) by selection with 0.8 mg/ml G418 for 4 weeks. Transfected cells were lysed in 3 ml lysis buffer (20 mM Tris-HCl, pH 7.5, 10 mM EDTA, 100 mM NaCl, 1% Triton X-100, 0.5 mM sodium orthovandate, 50 mM sodium fluoride, 10 mM β-glyceroxysphosphate, and 1% protease inhibitor cocktail [Sigma]) on ice for 5 min and clarified by centrifugation (13,000 g) 20 min later. Cell extracts were preincubated for 1 h at 4°C with 60 µl of 60 µl of anti-Myc MAb (9B11) or anti-Flag MAb (M2, Sigma) and A549 cell extract (1.5 ml) with either 100 µl anti-XRC1 polyclonal antibody (SK3188) or 0.01 µl rabbit immunoglobulin G (IgG; Dako) overnight at 4°C with gentle agitation. The beads were then washed three times with lysis buffer (300 µl each wash) and bound proteins eluted by heating with 55 µl of 2× SDS-PAGE sample buffer at 90°C for 5 min. Clarified protein samples were fractionated by SDS-PAGE, transferred to nitrocellulose, and immunoblotted with anti-Myc MAb (9B11) or anti-XRC1 (SK3188) or anti-APLF (SK3595) polyclonal antibody.

Direct and indirect immunofluorescence experiments. For direct immunofluorescence experiments, XRC1 with mutant EM (30, 31) or XRC4 mutant XR-1 (20, 28) CHO cells seeded onto coverslips were transfected with the indicated enhanced YFP or mRFP fusion protein constructs by using GeneJuice transfection reagent (Novagen). After 24 h, cells were washed with phosphate-buffered saline (PBS) and mock treated or treated with 10 µM hydrogen peroxide in PBS for 10 min at room temperature, washed with PBS, and then incubated in drug-free media at 37°C for 20 to 120 min. The coverslips were then washed with PBS and fixed in 4% formaldehyde in PBS. Fixed cells were then permeabilized in 0.2% Triton X-100 for 2 min, washed with PBS, and stained with 0.000025% DAPI (4′,6′-diamidino-2-phenylindole) for 5 min. Coverslips were mounted in Vectashield (Vector Labs) and analyzed with a Zeiss Axioplan 2 fluorescence microscope. Photographs were taken at a magnification of ×100.
and YFP-APLF-transfected cells scored for subcellular localization of YFP-APLF.

For indirect immunofluorescence experiments, A549 cells were seeded onto gridded coverslips (MatTek) in 10-cm dishes at ~1 × 10^6 cells/cm^2 and, after 2 days, preincubated for 10 min with 10 μg/mL Hoechst dye 33258 at 37°C. Selected cells were then irradiated with a 551-nm UVA laser focused through a 4x/0.12 objective using a Zeiss Axiovert equipped with LSM 520 Meta. UVA (10.47 μJ/cm^2) was introduced to an area of approximately 15 μm by 2 μm (approximately 0.35 μm^2). After exposure, coverslips were incubated at 37°C for the times indicated and washed in ice-cold PBS, and cells were fixed in ice-cold methanol-acetone (1:1) for 5 min and then permeabilized for 5 min in PBS-0.1% Tween. Coverslips were incubated in PBS-5% FMD for 30 min for blocking and then overnight at 4°C in PBS-1% FMD containing anti-XRCC1 MAb (clone 33-2-5) and anti-APLF polyclonal antibody (both at 1/200 dilutions). Coverslips were then incubated with secondary labeling with Alexa Fluor 555 anti-mouse and Alexa Fluor 488 anti-rabbit antibodies (1/200 in PBS-1% milk; Invitrogen) for 1 hour at room temperature. DNA was stained with 0.1 μg/mL DAPI (Sigma). Tracs were then visualized using a Nikon Eclipse 50i microscope fitted with a ×100 oil immersion objective.

Chromosomal DNA strand break repair assays. To knock down APLF in SH-SY5Y cells, 2 × 10^5 cells were cotransfected with pCD2E vector (2 μg) and either pMAX-GFP vector (4 μg; Amaxa), pSUPvector harboring the APLF RNAi sequence GAAGAATCTGCAAGAGATA (4 μg), or 160 pg of the XRCC1 small interfering RNA (siRNA) duplex GCCUGAAGAUUGCGUA UAdTdT (sense strand; QAIGEN) by using Nucleofector and Nucleofector kit V (Amaxa). Twenty-four hours after nucleofection, cells were placed into a mild select medium containing medium containing 0.25 mM G418 and 10 μM all trans retinoic acid to induce neuronal differentiation. After 5 days of selection, the medium was replaced with medium containing 10 μM retinoic acid only. For alkaline comet assays, 5 × 10^5 SH-SY5Y cells were harvested 6 days after transfection and irradiated (20 Gy of gamma rays) before being returned to 37°C for 7.5, 15, or 30 min. At each time point, 1 × 10^5 treated cells were removed and DNA damage was measured by single-cell agarose gel electrophoresis, essentially as described previously (5). For γ-H2AX assays, A549 cells stably transfected with pCD2E and either empty pSUPER or pSUPER encoding the APLF RNAi sequence GAAGAATCTGCAAGAGATA, or SH-SY5Y cells 6 days after transient transfection with green fluorescent protein, pSUPVECTOR-APLF, or XRCC1 siRNA as described above, were grown on glass coverslips and exposed to 1 Gy of γ-radiation before being returned to 37°C. At the times indicated, coverslips were washed in PBS, fixed (5 min in 4% paraformaldehyde in PBS), permeabilized (0.2% Triton X-100 for 2 min), blocked (5% FMDM for 30 min), and incubated with anti-γ-H2AX MAb (clone JBW301, 1/800 in 1% NFDM in PBS; Upstate). Cells were then washed (three times for 5 min each) in PBS containing 0.1% Tween 20 and 0.02% SDS and incubated for 1 h with Alexa Fluor 488 goat anti-mouse IgG secondary antibody (1/200 dilution in 1% milk-PBS). The cells were then washed (five times for 5 min each) as described above, mounted in Vectashield (Vector Labs), and scored for γ-H2AX foci by using a Nikon Eclipse 50i microscope.

DNA damage-induced modification of APLF. Subconfluent 1BR3, FD105 (A0A1), or AT7BI (A-T) primary fibroblasts were exposed, either to γ-ray γ-irradiation or treated with 10 mM H2O2 before being returned to 37°C. At the times indicated, coverslips were washed in PBS, fixed (5 min in 4% paraformaldehyde in PBS), permeabilized (0.2% Triton X-100 for 2 min), blocked (5% FMDM for 30 min), and incubated with anti-γ-H2AX MAb (clone JBW301, 1/800 in 1% NFDM in PBS; Upstate). Cells were then washed (three times for 5 min each) in PBS containing 0.1% Tween 20 and 0.02% SDS and incubated for 1 h with Alexa Fluor 488 goat anti-mouse IgG secondary antibody (1/200 dilution in 1% milk-PBS). Cells were then washed twice, resuspended in SDS-PAGE sample buffer, and aliquots of cell extracts were fractionated by SDS-PAGE (7.5% gels) and immunoblotted with anti-APLF polyclonal antibody (SK395).

RESULTS

Database analyses identified a third protein that contains an FHA domain with sequence similarity to the FHA domains of several other DNA strand break repair proteins, including aprataxin and DNA ligase III. Indeed, APLF interacted with both of these proteins in yeast two-hybrid assays but did not interact with several other DNA strand break repair proteins, including aprataxin and DNA ligase III. To knock down APLF in human cells, we transfected A549 cells with pCD2E vector (2 μg) and either empty pSUPER or pSUPER encoding the APLF RNAi sequence GAAGAATCTGCAAGAGATA, or SH-SY5Y cells 6 days after transient transfection with green fluorescent protein, pSUPvector-APLF, or XRCC1 siRNA as described above, were grown on glass coverslips and exposed to 1 Gy of γ-radiation before being returned to 37°C. At the times indicated, coverslips were washed in PBS, fixed (5 min in 4% paraformaldehyde in PBS), permeabilized (0.2% Triton X-100 for 2 min), blocked (5% FMDM for 30 min), and incubated with anti-γ-H2AX MAb (clone JBW301, 1/800 in 1% NFDM in PBS; Upstate). Cells were then washed (three times for 5 min each) in PBS containing 0.1% Tween 20 and 0.02% SDS and incubated for 1 h with Alexa Fluor 488 goat anti-mouse IgG secondary antibody (1/200 dilution in 1% milk-PBS). Cells were then washed twice, resuspended in SDS-PAGE sample buffer, and aliquots of cell extracts were fractionated by SDS-PAGE (7.5% gels) and immunoblotted with anti-APLF polyclonal antibody (SK395).

Downloaded from http://mcb.asm.org/ on June 19, 2014 by guest
FIG. 1. Conserved FHA and tandem ZnF domains in APLF. (A) Alignment of the FHA domains of APLF, aprataxin (APTX), and PNK. Identical residues are highlighted in red, highly conserved residues in blue, and similar residues in green. Putative phosphate-binding residues are boxed in red, and the basic residues that are believed to confer specificity for binding CK2-phosphorylated motifs are underlined. (B) APLF protein homologues. BLAST analyses identify multiple homologues of APLF in mouse (*Mus musculus*), chicken (*Gallus gallus*), mosquito (*Anopheles gambiae*), and purple sea urchin (*Strongylocentrotus purpuratus*). Identical residues are in red, highly conserved residues in blue, and blocks of similar residues in green. Dotted boxes denote the amino-terminal FHA domain and the putative tandem ZnFs at the C terminus. (C) BLAST analyses with the C-terminal putative tandem ZnF motif of APLF identifies 18 additional polypeptides that possess this motif in single copy, many of which are likely DNA repair- and DNA damage-associated proteins. Identical residues are boxed in yellow (note that these are the putative metal coordinating residues), highly conserved residues boxed in green, and blocks of similar residues boxed in blue. Black circles denote the C terminus of the polypeptide.
panels), neither protein bound to control slots blotted with CK2 reaction products lacking XRCC1-His (Fig. 3C, bottom left panel). In contrast to His-APLF and His-APLF1-166, a C-terminal fragment of His-APLF (His-APLF360-511) containing the putative C\textsubscript{2}H\textsubscript{2}ZnFs failed to interact with CK2-phosphorylated XRCC1-His (Fig. 3C, right panel). Similar results were observed by far-Western blotting, in which the CK2-phosphorylated XRCC1-His protein probe detected His-APLF and His-APLF1-166, but not His-APLF360-511, proteins present on renatured Western blots (Fig. 3D). We conclude from these experiments that the FHA domain in APLF interacts with CK2-phosphorylated XRCC1.

To further examine whether APLF is a component of the DNA damage response, we compared the subcellular localization patterns of endogenous XRCC1 and APLF in human A549 cells following UVA laser irradiation. As expected, XRCC1 rapidly accumulated (within 3 min) at sites of UVA damage (Fig. 4A). More significantly, APLF colocalized and accumulated with XRCC1 at these sites, confirming that APLF is a component of the response to UVA-induced cellular damage. To examine the relationship between XRCC1 and APLF in more detail, we compared the subcellular localization patterns of YFP- and RFP-tagged human APLF and XRCC1 before and after treatment with H\textsubscript{2}O\textsubscript{2} in transiently transfected XRCC1 mutant CHO cells (EM9 cells). Whereas RFP-XRCC1 was largely or entirely nuclear in all transfected EM9 cells,
YFP-APLF was largely nuclear or pancellular in ∼60% of cells in the presence of RFP-XRCC1 and largely cytosolic or pancellular in ∼90% of cells in the absence of RFP-XRCC1 (Fig. 4B and C, left panel). The fraction of cells with largely nuclear YFP-APLF transiently increased after H$_2$O$_2$ treatment in an RFP-XRCC1-dependent manner (Fig. 4C, middle and right panels). The presence of a large proportion of cells with largely nuclear YFP-APLF was also dependent on a functional FHA domain, because the YFP-APLFR27A protein harboring a mutated FHA domain was largely cytoplasmic or pancellular in most cells both before and after H$_2$O$_2$ treatment, even in the presence of RFP-XRCC1 (Fig. 4C). We conclude that RFP-XRCC1 promoted the nuclear import or retention of YFP-APLF in these experiments in a manner that was stimulated by oxidative DNA damage and which required the APLF FHA domain.

In the majority (∼83%) of cotransfected cells, YFP-APLF and RFP-XRCC1 colocalized in subnuclear foci after H$_2$O$_2$ treatment (Fig. 4D and 5A, left panel). In contrast, far fewer focus-positive cells (∼15%) were observed in EM9 cells transfected with either YFP-APLF alone or a combination of YFP-APLFR27A and RFP-XRCC1 (Fig. 5A). These data suggest that RFP-XRCC1 stimulates the accumulation of YFP-APLF at oxidative DNA strand breaks but that it is not essential for this process. To examine whether this effect of RFP-XRCC1 reflected its impact on the nuclear localization of YFP-APLF, we created YFP-nls-APLFR27A, a derivative of YFP-APLFR27A in which we engineered an SV40 nuclear localization signal.

FIG. 3. APLF preferentially interacts with CK2-phosphorylated XRCC1 in vitro. (A) One microgram of recombinant human His-APLF, His-APLF$^{1-166}$, or His-APLF$^{360-511}$ was fractionated by SDS-PAGE and stained with Coomassie blue. (B) Aliquots of mock-phosphorylated (XH) or CK2-phosphorylated (XH-P) recombinant human XRCC1-His were fractionated by SDS-PAGE and immunoblotted with anti-XRCC1 polyclonal antibody (SK318), anti-phosphoserine 485/phosphothreonine 488 XRCC1 polyclonal antibody (BL610; Bethyl Labs) (pS485/pT488), or BL603 anti-phosphoserine 518/phosphothreonine 519/phosphothreonine 523 XRCC1 polyclonal antibody (BL603; Bethyl Labs) (pS518/pT519/pT523). (C) Nitrocellulose membranes slot blotted with 1- to 8-μl aliquots of phosphorylation reaction mixtures containing XRCC1-His alone (0.125 to 1 μg of XRCC1, respectively), CK2 alone, or both XRCC1-His (0.125 to 1 μg) and CK2 (XRCC1-His+CK2) were incubated with His-APLF, His-APLF$^{1-166}$, or His-APLF$^{360-511}$ protein probes, as indicated. Filter-bound APLF was then detected using anti-APLF polyclonal antibody, which recognizes all three recombinant APLF proteins (data not shown). (D) Three micrograms of His-APLF, His-APLF$^{1-166}$, or His-APLF$^{360-511}$ was fractionated by SDS-PAGE in quadruplicate, transferred to nitrocellulose, renatured, and incubated with protein probes comprised of mock phosphorylation reaction mixtures containing XRCC1-His protein alone (XRCC1), CK2 phosphorylation reaction mixtures containing XRCC1-His and CK2 (XRCC1/CK2), or CK2 phosphorylation reaction mixtures lacking XRCC1-His (CK2). The fourth replicate was stained with Ponceau S. Filter-bound XRCC1-His was subsequently detected using anti-XRCC1 antibody.
FIG. 4. XRCC1 promotes DNA damage-associated subcellular redistribution of APLF. (A) Indirect immunofluorescence analysis of endogenous XRCC1 and APLF accumulation at sites of UVA irradiation. Human A549 cells were preincubated with Hoechst 33258 (10 μg/ml) for 10 min and irradiated within the area indicated (left panel, dotted white box) with a UVA laser (351 nm). Three minutes after exposure, cells were fixed and labeled with mouse anti-XRCC1 MAb and rabbit anti-APLF SK3595 polyclonal antibody, followed by goat Alexa Fluor 555-conjugated anti-mouse (red) and goat Alexa Fluor 488-conjugated anti-rabbit (green) secondary antibodies. DNA was counterstained with DAPI (blue). (B) Subcellular localization of YFP-APLF protein transiently expressed alone or in combination with RFP-XRCC1 in XRCC1−/− mutant EM9 CHO cells. Note that the images employed derivatives of APLF in which the two putative zinc coordinating cysteine residues in the first (YFP-APLF^{zfm1}) or second (YFP-APLF^{zfm2}) ZnF motifs were mutated to alanine. Neither of the ZnF mutations reduced XRCC1-dependent nuclear import/retention of YFP-APLF in untreated EM9 cells, although the ZFM1 mutation did reduce the XRCC1-dependent increase in nuclear YFP-APLF observed after H₂O₂ treatment (Fig. 5B, right panel). The ZFM1 mutation also reduced the formation of YFP-APLF nuclear foci in the presence of XRCC1, by ~30% (Fig. 5C, left panel). More significantly, however, the XRCC1-independent accumulation of YFP-APLF in nuclear foci was reduced by the ZFM2 mutation and ablated by the ZNF1 mutation (Fig. 5C, right panel). These data confirm that the tandem ZnF motif is required for XRCC1-independent recruitment/accumulation of APLF at sites of oxidative DNA damage.

To examine whether the tandem ZnF promoted XRCC1-independent accumulation of YFP-APLF at sites of oxidative DNA damage through an impact on nuclear localization, we employed derivatives of YFP-APLF and YFP-APLF^{zfm1} that harbored an SV40 NLS, denoted YFP-nls-APLF and YFP-nls-APLF^{zfm1}, respectively. While both YFP-nls-APLF and YFP-nls-APLF^{zfm1} were able to assemble into subnuclear foci in the presence of XRCC1, only YFP-nls-APLF did so in the absence of RFP-XRCC1 (Fig. 5D, left and middle panels). Thus, the addition of an NLS did not circumvent the requirement for the tandem ZnF, suggesting that the ZnF fulfills a function other than increasing the nuclear import/retention of YFP-APLF. Interestingly, we noted in these experiments that RFP-XRCC1 stimulated the assembly of YFP-nls-APLF nuclear foci, despite the presence of an NLS, and did so in a manner that was dependent on an intact FHA domain (Fig. 5D, middle and right panels). This suggests that the impact of the XRCC1-APLF interaction extends beyond its ability to promote APLF nuclear import/retention. In summary, we conclude from these experiments that the accumulation of YFP-APLF at oxidative DNA strand breaks is promoted by at least three mechanisms: two that are dependent on FHA domain-mediated interaction with XRCC1, including one that involves increased nuclear import/retention of APLF, and one that is...
independent of XRCC1 but dependent on the tandem ZnF motif.

To further examine the involvement of APLF in the response to DNA damage, we compared its electrophoretic mobilities before and after treatment with gamma rays or \(\text{H}_2\text{O}_2 \). Notably, the mobility of endogenous APLF during SDS-PAGE decreased after treatment with either \(\text{H}_2\text{O}_2 \) or ionizing radiation (IR) in wild-type cells and in aprataxin-defective AOA1 primary fibroblasts (Fig. 6A). However, this shift in electrophoretic mobility was not detected in ataxia telangiectasia fibroblasts lacking the DSB-responsive protein kinase ATM. These data support the idea that APLF is involved in the cellular response to DSBs. To examine whether APLF is required for chromosomal DNA single- and double-strand break repair, we mock depleted or depleted APLF or XRCC1 from differentiated/noncycling SH-SY5Y neuroblastoma cells by transient siRNA transfection (Fig. 6B, left panel). Whereas the type of siRNA did not affect the level of DNA strand breaks induced by IR, as measured by alkaline comet assays, the rate at which DNA strand breaks declined was significantly delayed in both XRCC1- and APLF-depleted cells (Fig. 6C). It is likely that the delay observed here reflects a defect in SSBR, because 95% of the total breaks induced by IR are SSBs (4). To examine the rate of DSBR, we quantified the level of γH2AX, an established marker of DSBs (26, 27), in gamma ray-treated SH-SY5Y neuroblastoma cells that were depleted of APLF as described above or in A549 cells that were stably depleted of APLF (Fig. 5B, right panels). We consistently observed in these experiments that γH2AX foci declined at significantly reduced rates in both APLF-depleted neuroblastoma cells and A549 cells following 1 to 3 Gy of IR (Fig. 6D). In contrast, repair rates were normal in XRCC1-depleted SH-SY5Y cells, consistent with the absence of a measurable DSBR defect in these cells (Fig. 6D, right panel).
DISCUSSION

We describe here a new component of the DNA single- and double-strand break repair machinery. This protein is a previously uncharacterized ORF (C2orf13) that we have denoted APLF based on the presence of an aprataxin- and PNK-like FHA domain at its amino terminus. Consistent with the presence of this domain, APLF interacts with both XRCC1 and XRCC4, the same components of the single- and double-strand break repair machinery that are bound by PNK and aprataxin (11, 12, 14, 16, 22, 33). Moreover, similar to the situation with PNK and aprataxin, the interaction of XRCC1 with full-length APLF in vitro or with a fragment of APLF containing the FHA domain was largely dependent on the phosphorylation of XRCC1 by CK2. Intriguingly, a yeast two-hybrid screen employing APLF as bait recovered not only multiple clones of both XRCC1 and XRCC4 but also multiple clones of XRCC5 (Ku86). Of 109 cDNA clones recovered, 6 encoded XRCC1, 15 encoded XRCC4, and 7 encoded XRCC5 (Ku86) (data not shown). APLF may thus associate with the nonhomologous end-joining machinery through interactions with both XRCC4 and the Ku86 heterodimer.

Direct evidence of a role for APLF in the cellular response to DNA damage emerged from the observations that endogenous APLF accumulates at sites of UVA laser damage in human A549 cells and that recombinant YFP-APLF accumulates in subnuclear foci in H2O2-treated CHO cells. Whereas the UVA laser tracts most likely contain sites with both single- and double-strand breaks (data not shown), the H2O2-induced foci most likely reflect just SSBs. This is because they colocalize and are stimulated by RFP-XRCC1 and because they do
not significantly colocalize with sites of γ-H2AX (data not shown). In addition, we failed to detect accumulation of the DSBR protein XRCC4 in H$_2$O$_2$-induced subnuclear foci under the same experimental conditions. It is also noteworthy that, in collaborative experiments with Akira Yasui, we observed the accumulation of YFP-APLF at UVA laser-induced damage under conditions where SSBs are selectively induced (19; unpublished observations).

The ability of RFP-XRCC1 to stimulate the accumulation of YFP-APLF in subnuclear foci most likely reflected, at least in part, the impact of recombinant XRCC1 on the nuclear import or retention of YFP-APLF. This is because the addition of an NLS to YFP-APLF circumvented the requirement of RFP-XRCC1 for high levels of YFP-APLF nuclear foci. However, these experiments do not rule out an additional role(s) for XRCC1 during the accumulation of YFP-APLF at sites of DNA damage. This is because the NLS had a much greater impact on the nuclear import/retention of YFP-APLF than did recombinant RFP-XRCC1, perhaps thereby masking additional roles for XRCC1. Indeed, consistent with this notion, the coexpression of RFP-XRCC1 stimulated the appearance of YFP-nls-APLF nuclear foci, albeit to a lesser extent than YFP-APLF foci (fivefold versus twofold), despite the presence of an NLS. The nature of the alternative mechanism by which XRCC1 might promote the accumulation of YFP-APLF at sites of oxidative DNA damage is not known. However, since this mechanism required an intact FHA domain in APLF, one attractive possibility is that it reflects the scaffolding role of XRCC1. A similar explanation has been suggested for the observation that XRCC1 also promotes the accumulation of aprataxin, PNK, and DNA polymerase β at sites of H$_2$O$_2$-induced DNA damage (21; unpublished observations).

H$_2$O$_2$-induced YFP-APLF foci were observed in 15 to 40% of CHO cells in the absence of XRCC1, and a similar fraction of YFP-APLF focus-positive cells was observed when RFP-XRCC1 was coexpressed with YFP-APLF lacking an intact FHA domain. Thus, although greatly stimulated by the coexpression of recombinant XRCC1, the recruitment/accumulation of YFP-APLF at sites of oxidative DNA damage can occur independent of XRCC1. Intriguingly, this XRCC1-independent mode of APLF recruitment/accumulation required the two tandem ZnF motifs, supporting the notion that these structures represent a novel class of DNA strand break-responsive motifs. The amino acid sequences of the tandem ZnFs in APLF appear to be distinct from those present in other SSBR/DSBR proteins, such as aprataxin and poly(ADP-ribose) polymerase 1, as indicated by the limited number of proteins detected as containing this motif in database searches (Fig. 1C). It is not yet clear what function these putative ZnFs fulfill, but the presence of this structure in a variety of other DNA repair and DNA metabolic proteins suggests that it is an important one. The impact of the ZnFs on the XRCC1-independent recruitment/accumulation of YFP-APLF at sites of oxidative DNA damage was not mediated via increased nuclear import or retention of APLF, because the addition of an NLS did not compensate for the absence of intact ZnFs. We suggest that the ZnF may bind to DNA strand breaks directly, thereby promoting XRCC1-independent recruitment of APLF at sites of chromosomal damage.

In contrast to RFP-XRCC1, RFP-XRCC4 did not promote the redistribution of APLF to nuclei or the accumulation of APLF in H$_2$O$_2$-induced subnuclear foci. This may reflect the nature of the cellular response to DSBs because accumulation in discrete subnuclear foci does not appear to be a general feature of nonhomologous end-joining enzymes such as XRCC4 and Ku following oxidative stress. However, further evidence that APLF is involved in the response to DSBs was suggested by the change in the electrophoretic mobility of this protein induced by IR or H$_2$O$_2$. Significantly, this phenomenon was dependent on the DSB sensor protein kinase ATM, suggesting that APLF is phosphorylated in an ATM-dependent manner in response to DSBs, though we cannot rule out that ATM is activated in this context by some other type of lesion or event. It also remains to be determined whether APLF is a substrate for ATM or whether APLF is modified via ATM indirectly.

Alkaline comet and γ-H2AX assays suggested that the depletion of APLF by siRNA retards the rate of DNA single- and double-strand break repair at early times after IR. We observed a DSBR defect in both proliferating A549 lung carcinoma cells and noncycling SH-SY5Y neuroblastoma cells, as measured by γ-H2AX staining. However, using alkaline comet assays, we detected a DNA strand break repair defect only in noncycling SH-SY5Y cells (data not shown). Since alkaline comet assays measured primarily SSBs in these experiments, due to the abundance of SSBs relative to DSBs induced by IR (~20:1), we suggest that this reflects a difference in the redundancies of APLF during SSBR in proliferating versus noncycling cells. Differences in polypeptide requirements during SSBR in S-phase versus nonreplicating cells have been reported previously (24, 29). The impact of APLF depletion on DNA strand break repair rates was subtle, though in the case of SSBR, it was no less subtle than in cells depleted of XRCC1, which is the archetypal SSBR protein (7, 32). The relatively small impact on repair rates observed in these experiments could thus be due to the incomplete depletion of XRCC1 and APLF by siRNA. Alternatively, it is possible that APLF is required for the rapid repair of only a subset of DNA strand breaks, such as those with specific types of DNA termini. This is also most likely the case for aprataxin, which removes rare 5′ AMP adducts from DNA strand breaks in vitro but does not have a measurable impact on global rates of DNA strand break repair in vivo (1).

What role might APLF play during DNA strand break repair? Given that APLF most likely binds the same regions of XRCC1 and XRCC4 that are bound by PNK and aprataxin, both of which are end processing enzymes, it is tempting to speculate that APLF fulfills or facilitates a similar activity. This suggests a model in which CK2-phosphorylated XRCC1 or XRCC4 can recruit one of at least three different end processing activities to an SSB or DSB, depending on the nature of the damaged termini. The unusual nature of the tandem ZnFs may be informative in this respect. Combined sequence/structure database analyses assign this motif as a tandem ZnF most closely related to the CCCH tandem ZnFs present in the tristetrapolin family of mRNA binding proteins (3, 17). Interestingly, these tandem ZnFs appear to be required to facilitate the deadenylation of 3′ poly(A) tails of specific mRNAs, most likely through the recruitment of an RNase (18). Although they share some similarities, the APLF tandem ZnFs and
tristetraprolin family ZnFs are clearly distinct, most notably in the spacing between the zinc coordinating residues and the absence of specific residues critical for mRNA binding. It is thus tempting to speculate that the tandem putative ZnFs in AFLF target DNA rather than RNA, thereby facilitating the processing of a specific type of DNA 3’ terminus.

ACKNOWLEDGMENTS

This work was supported by MRC grants G0001259, G0400959, and G0600776 and an MRC studentship to N.I. We thank Roger Phillips in the Sussex Centre for Advanced Microscopy for help with the UVA laser experiments.

REFERENCES

AUTHOR’S CORRECTION

APLF (C2orf13) Is a Novel Human Protein Involved in the Cellular Response to Chromosomal DNA Strand Breaks

Natasha Iles, Stuart Rulten, Sherif F. El-Khamisy, and Keith W. Caldecott

Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, United Kingdom, and
Biochemistry Department, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt

Volume 27, no. 10, p. 3793–3803, 2007. Page 3799: In the legend to Fig. 4C, “HeLa” should read “EM9 CHO.”
Page 3800: In the legends to Fig. 5B, C, and D, “HeLa” should read “EM9 CHO.”
Page 3793: The postal code for Sussex should read as shown above.