Good-Turing Frequency Estimation Without Tears.

Sampson, Geoffrey and Gale, William A. (1995) Good-Turing Frequency Estimation Without Tears. Journal of Quantitative Linguistics, 2 (3). pp. 217-237. ISSN 0929-6174

Full text not available from this repository.

Abstract

Linguists and speech researchers who use statistical methods often need to estimate the frequency of some type of item in a population containing items of various types. A common approach is to divide the number of cases observed in a sample by the size of the sample; sometimes small positive quantities are added to divisor and dividend in order to avoid zero estimates for types missing from the sample. These approaches are obvious and simple, but they lack principled justification, and yield estimates that can be wildly inaccurate. I.J. Good and Alan Turing developed a family of theoretically well-founded techniques appropriate to this domain. Some versions of the Good–Turing approach are very demanding computationally, but we define a version, the Simple Good–Turing estimator, which is straightforward to use. Tested on a variety of natural-language-related data sets, the Simple Good–Turing estimator performs well, absolutely and relative both to the approaches just discussed and to other, more sophisticated techniques.

Item Type: Article
Schools and Departments: School of Engineering and Informatics > Informatics
Subjects: Q Science > QA Mathematics > QA0075 Electronic computers. Computer science
Depositing User: Chris Keene
Date Deposited: 29 Feb 2008
Last Modified: 30 Nov 2012 16:52
URI: http://sro.sussex.ac.uk/id/eprint/1450
Google Scholar:132 Citations
📧 Request an update