A posteriori error analysis for the mean curvature flow of graphs

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/1227/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Abstract. We study the equation describing the motion of a nonparametric surface according to its mean curvature flow. This is a nonlinear nonuniformly parabolic PDE that can be discretized in space via a finite element method. We conduct an a posteriori error analysis of the spatial discretization and derive upper bounds on the error in terms of computable estimators based on local residual indicators. The reliability of the estimators is illustrated with two numerical simulations, one of which treats the case of a singular solution.

Key words. finite element, mean curvature, error analysis, a posteriori, nonlinear PDE, parabolic equation, geometric motion, convergence, reliability, efficiency, sharp estimates, effectivity index

AMS subject classifications. Primary, 65N30, 65G20, 35K60; Secondary, 57R99, 40A30

DOI. 10.1137/S0036142903430207

1. Introduction. The objective of this article is the derivation of reliable a posteriori error estimates for the mean curvature flow (MCF) of a d-dimensional time-dependent submanifold $\Gamma(t)$ of the Euclidean space \mathbb{R}^{d+1}. We pay special attention to the physically relevant cases ($d = 1, 2, 3$), and we refer to $\Gamma(t)$ simply as a moving surface. A geometric definition of the MCF, whose details can be found in Huisken [15] and the references therein, is given by

\begin{equation}
V(x, t) = -\kappa(x, t) \quad \text{for } x \in \Gamma(t), t \in \mathbb{R},
\end{equation}

where V and κ are respectively the velocity and the vector mean curvature of Γ.

More general definitions of MCF are found in the literature [5, 11, 4], but will not be used.

In this paper we are interested in the graph (also called nonparametric) description in which the moving surface is described as the graph of a function u defined on a space-time domain $\Omega \times [0, T] \subset \mathbb{R}^d \times \mathbb{R}$. This description leads to the following PDE, referred to as the mean curvature flow of graphs (MCFG):

\begin{equation}
\frac{\partial u(x, t)}{Qu(x, t)} - \frac{1}{d} \text{div} \frac{\nabla u(x, t)}{Qu(x, t)} = 0 \quad \text{for } x \in \Omega, t \in [0, T],
\end{equation}

where ∇ denotes the derivative with respect to x and Q the elementary area operator defined by

\begin{equation}
Qw := (1 + |\nabla w|^2)^{1/2}.
\end{equation}
We drop the factor $1/d$, through a time rescaling by d, and we study the following initial-boundary value problem associated with (1.2).

Problem 1.1 (Cauchy–Dirichlet problem for the MCFG). Given functions $f : \Omega \times (0, T] \to \mathbb{R}$ and $g : \partial_\nu (\Omega \times (0, T)) \to \mathbb{R}$, find $u : \bar{\Omega} \times [0, T] \to \mathbb{R}$ such that

\[
\begin{align*}
\frac{\partial u(x, t)}{Q u(x, t)} - \text{div} \frac{\nabla u(x, t)}{Q u(x, t)} &= f(x, t) \quad \text{for} \ (x, t) \in \Omega \times (0, T], \\
(u(x, t)) &= g(x, t) \quad \text{for} \ (x, t) \in \partial_\nu (\Omega \times (0, T)),
\end{align*}
\]

where $\partial_\nu (\Omega \times (0, T))$ is the parabolic boundary defined as $\Omega \times \{0\} \cup \partial \Omega \times [0, T]$.

Arguably the MCF plays the role of model geometric motion, in the same way as the heat equation plays the role of model diffusion equation. For more than two decades the MCF has been the object of mathematical analysis [1, 4, 5, 11, 15, 16] as well as computer simulations [5, 8, 23, 20] and numerical analysis [6, 7, 8, 28]. It has also attracted the interest of practitioners, especially in the fields of materials science and phase transition where the MCF, or some closely related geometric motion, often models the motion of a free boundary [3, 13, 24].

A straightforward way to approximate numerically the solution of Problem 1.1 is first to discretize the spatial variable through a finite element method—which comes naturally, as (1.4) is written in “divergence form”—and secondly to discretize the time variable with a finite difference scheme known as semi-implicit, in which the nonlinearity is treated explicitly and the linear part implicitly [8]. The first stage of this process, discussed in sections 2.1–2.5, is referred to as the spatial (semi-) discretization. Deckelnick and Dziuk [7] and Dziuk [8] have derived a priori error estimates for both the spatially discrete and the semi-implicit fully discrete scheme.

The study of *a posteriori error estimates* for evolution equations, which has developed in the last 15 years, is mainly motivated by their successful use in deriving adaptive mesh refinement algorithms. The lack of such estimates in the case of the MCFG and the interest in adaptive methods for this problem are the driving motives behind this article. Our main results, discussed in section 3, are a posteriori upper bounds on the error for the spatially discrete approximation. A posteriori error estimates have been established for linear parabolic problems [9, 19] and used to derive adaptive mesh refinement algorithms. Analogous results have also been derived for certain nonlinear elliptic [12, 26] and parabolic [10, 17, 18] equations, but these cannot be applied to the MCFG.

As observed since the early days of adaptive finite element methods (FEM) [2], an adaptive mesh refinement algorithm must satisfy two fundamental properties: *reliability* and *efficiency*. These two algorithmic concepts are closely related to the nature of the error bounds. Indeed, an algorithm is called *reliable* if the error between its output and the exact solution is bounded from above by a given tolerance; in terms of estimators, reliability is achieved if the error/estimator ratio—known as the *effectivity index* in the literature—is bounded from above by a positive constant. On the other hand, an algorithm is called *efficient* if it produces a result with a prescribed error in the least amount of computational time; the efficiency of an algorithm translates, in the language of estimators, into the effectivity index being bounded from below. For an estimator to be both reliable and efficient, it is necessary for it to be *sharp*, meaning that the order of convergence of the error and that of the estimator must be equal, as the meshsize goes to zero. In particular, *sharpness* allows the estimators to be used in stopping criteria for adaptive algorithms. In this paper, besides proving reliable error estimates (upper error bounds), we will also conduct numerical experiments to
understand whether these estimates are also sharp. For this, the numerical examples we shall present in section 7 are mainly designed toward comparing the numerical asymptotic convergence rates of the error and of the estimators.

The MCFG is an example of an evolution equation that is not covered by any of the general techniques developed so far for the derivation of a posteriori error estimates for nonlinear equations [10, 17, 27]. This is mainly due to the nonuniformly parabolic nature of the equation and, more philosophically, to the fact that general nonlinear theories end up being less reliable and harder to apply. In this paper we employ an ad hoc energy technique to derive the estimates. To the best of our knowledge, the energy technique is the only practical way to achieve our aim. A distinctive feature of this paper is the use of special quantities to quantify the error. Like in most nonuniformly parabolic equations, the Sobolev norms are extremely hard to handle in the MCFG context, and we are naturally led to use the geometric errors, which are introduced next. These are not Sobolev norms of the error $u - u_h$, where u and u_h are respectively the exact and approximate solutions, but more specialized measures of the error (see section 2.5). The geometric errors are not even symmetric in u and u_h, yet they satisfactorily quantify the error and are easy to use.

Definition 1.2 (geometric error). Let u be the solution of Problem 1.1 and u_h be the finite element solution given by Problem 2.5. For each $t \in [0, T]$, define

\begin{align}
A(t) & := \int_{\Omega} |N u_h(x, t) - N u(x, t)|^2 Qu(x, t) \, dx, \quad (1.6) \\
B(t) & := \int_0^t \int_{\Omega} (V u_h(x, s) - V u(x, s))^2 Qu(x, s) \, dx \, ds, \quad (1.7)
\end{align}

where

\begin{equation}
W^1(\Omega) \ni w \mapsto N w := \frac{(\nabla w; -1)}{Q w} \in L^\infty(\Omega)^{d+1}
\end{equation}

\begin{equation}
W^1_1(\Omega \times (0, T)) \ni w \mapsto V w := \frac{\partial_t w}{Q w} \in L^1_{loc}(\Omega \times (0, T))
\end{equation}

are, respectively, the normal vector and the normal velocity operators. We will denote by $C^k(\Omega)$ (resp., $W^k(\Omega)$) the space of k times continuously (resp., weakly) differentiable functions, by $W^k_p(\Omega)$ the usual Sobolev space of functions in $W^k(\Omega)$ with derivatives in $L^p(\Omega)$, and by $W^k_p(\Omega)$ the subspace of functions with vanishing trace.

The functions of time A and B are the building blocks of the total geometric error E defined by

\begin{equation}
E(t)^2 := B(t) + \sup_{[0, t]} A(s) = \int_0^t \int_{\Omega} (V u_h - V u)^2 Qu + \sup_{(0, t)} \int_{\Omega} |N u_h - N u|^2 Qu.
\end{equation}

We refer to $\sup_{[0, t]} A^{1/2}$ and $B^{1/2}$ as the geometric energy error and normal velocity error, respectively.

The integrals of the form $\int_{\Omega} Qu(x, t) \, dx$ in (1.9) can be interpreted as integrals over the moving surface $\Gamma(t)$, which give us the $L^2(\Gamma)$ norm of the difference of normals and the difference of normal velocities. A comparison with the integrals appearing on the left-hand side of (2.6) explains in part why they “fit” the problem.
We point out that, despite the natural relation between our notion of error and the MCFG, no related concept of error has yet been used in the context of a posteriori error control for parabolic equations. In fact, the geometric nature contrasts sharply with the pure analytic setting found, for instance, in Verfürth’s monograph [26]. A related, symmetric, geometric error is employed by Fierro and Veeser for the stationary case [12].

It is important to observe that the sharpest estimate in this article, given by Theorem 3.6, is a conditional estimate. By conditional we mean that the estimate is valid only if a certain condition on how close the approximate solution is to the exact solution is satisfied. A relevant feature of our result in this respect is that the condition can be machine-checked since it entails computable quantities. This is of paramount importance for a result to be fully “a posteriori” (see Remark 3.7). In this sense, to the best of our knowledge, our result is the first conditional a posteriori estimate for nonlinear parabolic equations. Conditional results have also been derived for the prescribed mean curvature (elliptic) equation by Fierro and Veeser [12]. We notice that Verfürth has also established conditional results, but the conditions are not fully a posteriori and cannot be machine-checked [26]. In order to appreciate the sharpness of the conditional result of Theorem 3.6, an unconditional estimate is given in Theorem 3.4 for the sake of comparison. Our numerical results provide a practical comparison between the two theoretical bounds and show that the conditional estimate is sharp while the unconditional estimate is not.

Dziuk has shown an a priori error bound of rate $O(h)$ on the geometric error in the spatially discrete case [8]. The geometric error introduced in Definition 1.2 is similar to the one used by Dziuk, but in his case the integrals are evaluated on the discrete surface, while we compute them on the exact surface. In this respect our a posteriori viewpoint can be seen, roughly speaking, as dual to the a priori approach. We notice, however, that our results are valid under weaker regularity assumptions on the exact solution u (see Example 7.5). Our analysis also includes time-dependent boundary value g and nonhomogeneous right-hand side f, while Dziuk’s analysis is limited to the homogeneous and time-independent boundary value case.

The rest of this paper is organized as follows. In section 2 we discuss some properties of Problem 1.1 and introduce the associated spatial finite element method. In section 3 we state the main results and make some observations. Next, in sections 4–6 we prove these results. Finally, numerical tests are discussed in section 7.

Assumption 2.1 (solvability and regularity). Unless otherwise stated, the following conditions will be assumed to hold:

(a) Classical solvability: Problem 1.1 admits a unique classical solution u in $C^{2,1}(\Omega \times (0, T]) \cap C^0(\Omega \times [0, T])$ for some $T > 0$.

(b) Boundary regularity of contact angle:

$$\nabla u(t) = \partial_t u(t) = \frac{\partial u(t)}{Qu(t)} \in W^{1}_{d}(\Omega) \quad \forall t \in [0, T]. \quad (2.1)$$

(c) Regularity of normal velocity:

$$Vu(t) = \frac{\partial u(t)}{Qu(t)} \in L^{d}(\Omega) \quad \forall t \in [0, T]. \quad (2.2)$$

3We use the following convention throughout this article: whenever a space-time function $w : \Omega \times [0, T] \rightarrow \mathbb{R}^N$ $(N = 1, d)$ is written with only one argument, it means that the argument is a time variable and that its value—e.g., $w(t)$ or $w(1/2)$—is a function with domain Ω.

1
(d) Regularity of vertical velocity:

\begin{equation}
\partial_t u(t) \in W^1_2(\Omega) \cap L_2(\Omega) \quad \forall t \in [0, T].
\end{equation}

Remark 2.2 (about the regularity assumptions). Assumption 2.1(a) is backed up by the fact that Problem 1.1 admits classical solutions under certain sufficient conditions relating the mean-convexity of \(\partial \Omega \) and the function \(|f| \) [16, section 12.8]. Solutions, which are classical up to blow-up, can also exist in more general situations where the domain is non-mean-convex or compatibility conditions are violated [25]. There are two implicit assumptions that are immediate consequences of Assumption 2.1(a): we necessarily have \(f \in C^0(\Omega \times [0, T]) \) and \(g \in C^0(\partial_p (\Omega \times [0, T])) \). Although a “weak form” of Problem 1.1 will be derived in section 2.3, we do not know of any satisfactory concept of a “weak solution” for it.

The reason that we assume (2.3) is technical: this assumption will be needed to test (1.4) by \(\partial_t u \) (see sections 2.3, 2.4, and 4.3). Notice that for \(d \leq 2 \), in view of the Sobolev embedding, this assumption can be simplified to \(\partial_t u \in W^1_2(\Omega) \) and implies (2.2). Notice also that, for \(d \geq 1 \), the Sobolev embedding and (2.3) imply that \(\partial_t u \in L_p(\Omega) \) for \(d' = d/(d-1) \).

Proposition 2.3 (weak form). Let \(u \in C^{2,1}(\Omega \times [0, T]) \cap C^0(\Omega \times [0, T]) \) be a given function that satisfies (2.1) and (2.2). The function \(u \) is a classical solution of Problem 1.1 if and only if

\begin{equation}
\begin{aligned}
\frac{1}{2} &\int_0^t \int_{\Omega} \left| Vu \right|^2 Qu + \int_{\Omega} Qu(t) \\
\leq &\exp \left(\frac{1}{2} \int_0^t \left\| f \right\|^2_{L_\infty(\Omega)} \left(\left\| Qg(0) \right\|_{L_1(\Omega)} + \left\| \partial_t g \right\|_{L_1(\partial \Omega \times (0, t))} \right) \right).
\end{aligned}
\end{equation}

Proof. Test (1.4) by \(\partial_t u \in L_p(\Omega) \) and, owing to (2.1) and (2.3), apply the integration by parts formula on \(\Omega \):

\begin{equation}
0 = \int_\Omega |Vu|^2 Qu + \int_\Omega \nabla u \cdot \nabla \partial_t u - \int_{\partial \Omega} \frac{\nabla u}{Qu} \cdot \nu \partial_t u - \int_{\Omega} f \partial_t u.
\end{equation}

The first term, which is equal to \(\int_{\Omega} Vu \partial_t u \), is well defined thanks to (2.3) and (2.2). The third and fourth terms are bounded as follows:

\begin{equation}
\int_{\partial \Omega} \nabla u \cdot \nu \partial_t u = \int_{\partial \Omega} \left(\frac{\nabla u}{Qu} \cdot \nu \right) \partial_t g \leq \left\| \partial_t g \right\|_{L_1(\partial \Omega)} ,
\end{equation}
Next we observe that the basic identity
\begin{equation}
\partial_t Q u(x, t) = \partial_t \sqrt{1 + |\nabla u|^2} = \frac{\nabla u \cdot \partial_t \nabla u}{Q u}
\end{equation}
implies
\begin{equation}
\frac{1}{2} \int_{\Omega} |V u|^2 Q u + \text{d}_t \int_{\Omega} Q u \leq \text{d}_t \|g\|_{L^1(\partial \Omega)} + \frac{1}{2} \|f\|_{L^\infty(\Omega)}^2 \int_{\Omega} Q u.
\end{equation}

The result is obtained by integrating on [0, t] and applying the Gronwall lemma. \qed

Inequality (2.6) acquires a geometric meaning upon observing that
\begin{equation}
\text{area}(\text{graph}(\psi)) = \int_{\Omega} |V u|^2 |Q u|^{\frac{1}{2}} \sqrt{1 + |\nabla u|^2}.
\end{equation}

2.1. Finite element discretization. We start by introducing \(\{ \mathcal{T}_h \}_h \), a shape-regular family of triangulations (simplicial partitions) of the domain \(\Omega \). This means that there exists a constant \(\sigma_0 \in \mathbb{R}^+ \), independent of the particular triangulation \(\mathcal{T}_h \), such that
\begin{equation}
\sup \{ \rho \in \mathbb{R}^+ : B_\rho(x) \subset K \} \geq \sigma_0 \quad \forall K \in \mathcal{T}_h.
\end{equation}

We will refer to \(\sigma_0 \) as the shape-regularity of the family \(\{ \mathcal{T}_h \}_h \). We assume that the approximate domain \(\Omega_h = \text{int}(\bigcup_{K \in \mathcal{T}_h} K) \) coincides with \(\Omega \); this is a simplifying assumption that could be removed at the cost of seriously complicating the analysis, without adding much content to the results we intend to present. The symbol \(h \) stands for both the local meshsize function and the global meshsize of \(\mathcal{T}_h \); this abuse of notation should not cause confusion.

Given a simplex \(K \in \mathcal{T}_h \) and \(\psi : \Omega \to \mathbb{R} \), we denote by \(\psi|_K \) the restriction \(\psi|_K \)—e.g., if \(\psi = h \), we have \(h_K = \text{diam}(K) \)—and by \(\mathcal{U}^h_K \), the \(\mathcal{T}_h \)-neighborhood of \(K \),
\begin{equation}
\mathcal{U}^h_K := \text{int} \left(\bigcup \{ K' \in \mathcal{T}_h : K' \cap K \neq \emptyset \} \right).
\end{equation}

We also associate with \(\mathcal{T}_h \) its internal mesh \(\Sigma_h := \bigcup_{S \in \mathcal{S}^\circ_h} S \), where \(\mathcal{S}^\circ_h \) is the set of internal edges (or faces) of the simplexes in \(\mathcal{T}_h \). The finite element spaces, constructed on \(\mathcal{T}_h \), that will be employed are
\begin{equation}
\mathcal{V}_h := \{ \phi \in W^1_2(\Omega) : \phi_K \in P^\ell \forall K \in \mathcal{T}_h \} \quad \text{and} \quad \mathring{\mathcal{V}}_h := \mathcal{V}_h \cap W^1_2(\Omega),
\end{equation}
where \(\ell \in \mathbb{Z}^+ \) and \(P^\ell \) is the space of polynomials of degree at most \(\ell \). A spatial finite element discretization of Problem 1.1 can be now derived from (2.4).

Problem 2.5 (spatially discrete scheme for the MCFG). Let \(\tilde{g}(t) \in \mathcal{V}_h \) be an interpolant of \(g(t) \). Find \(u_h \in C^1([0, T]; \mathcal{V}_h) \) such that, for each \(t \in [0, T] \),
\begin{equation}
u_h(t) - \tilde{g}(t) \in \mathring{\mathcal{V}}_h,
\end{equation}
in the proof of Lemma (3.9) with (3.3) \(\sigma \) constants, depending only on the shape-regularity (3.6) (3.7).

We start by introducing some definitions.

We start by introducing some definitions.

Definition 3.1 (residual functions). For each \(t \in [0, T] \), let \(r(t) \) be the internal residual and let \(j(t) \) be the jump residual associated with \(u_h \). These two functions are defined on \(\Omega \setminus \Sigma_h \) and \(\Sigma_h \), respectively, and are given by

\[
(3.1) \quad r(x, t) := \frac{\partial u_h(x, t)}{Qu_h(x, t)} - f(x, t) - \text{div} \left(\frac{\nabla u_h(x, t)}{Qu_h(x, t)} \right) \quad \text{for} \ x \in \Omega \setminus \Sigma_h,
\]

\[
(3.2) \quad j(x, t) := \left[\frac{\nabla u_h(x, t)}{Qu_h(x, t)} \right]_S \quad \text{for} \ x \in S \in \mathcal{F}_h,
\]

where the jump of a vector field \(\psi \) across an edge \(S \) is defined as

\[
(3.3) \quad [\psi]_S(x) := \lim_{\varepsilon \to 0} (\psi(x + \varepsilon \nu_S) - \psi(x - \varepsilon \nu_S)) \cdot \nu_S
\]

with \(x \in S \) and \(\nu_S \) denoting one of the two normals to \(S \) (the choice is arbitrary and does not affect the definition).

Definition 3.2 (local indicators and weights). Denote by \(C_1 \) and \(C_2 \) the Scott–Zhang interpolation inequality constants, which depend only on the shape-regularity \(\sigma_0 \) of \(\mathcal{F}_h \) and which we introduce later in inequalities (6.2) and (6.3), respectively. With each \(K \in \mathcal{F}_h \) we associate the local

\[
(3.4) \quad \eta_0^K(t) := h_K^{d/2} \left(C_1 \| r(t) \|_{L^1(K)} + C_2 \| j(t) \|_{L^\infty(\partial K)} \right),
\]

\[
(3.5) \quad \eta_1^K(t) := h_K^{d/2} \left(C_1 \| \partial_\nu r(t) \|_{L^1(K)} + C_2 \| \partial_\nu j(t) \|_{L^\infty(\partial K)} \right),
\]

and the local weights

\[
(3.6) \quad \omega^K(t) := \sup_{x \in K} Qu_h(x, t)^2, \quad \alpha^K(t) := \omega^K(t)^2 \sup_{x \in K} \frac{1}{Qu(x, t)}.
\]

Definition 3.3 (a posteriori error estimators). Denote by \(M \) and \(\gamma \) two positive constants, depending only on the shape-regularity \(\sigma_0 \), which we will introduce in detail in the proof of Lemma 6.4. We define the elliptic part of the proper estimator

\[
(3.7) \quad \widehat{\varepsilon}_{2,0}(t) := \sup_{s \in [0, t]} \hat{\varepsilon}_{2,0}(s), \quad \text{where} \quad \hat{\varepsilon}_{2,0}(t)^2 := \gamma^2 \sum_{K \in \mathcal{F}_h} \alpha^K(t) \eta_0^K(t)^2,
\]

the parabolic part of the proper estimator

\[
(3.8) \quad \widehat{\varepsilon}_{2,1}(t) := \int_0^t \hat{\varepsilon}_{2,1}(s) \, ds, \quad \text{where} \quad \hat{\varepsilon}_{2,1}(t)^2 := \gamma^2 \sum_{K \in \mathcal{F}_h} \alpha^K(t) \eta_1^K(t)^2,
\]

the elliptic part of the vicinity estimator

\[
(3.9) \quad \widehat{\varepsilon}_{\infty,0}(t) := \sup_{s \in [0, t]} \hat{\varepsilon}_{\infty,0}(s), \quad \text{where} \quad \hat{\varepsilon}_{\infty,0}(t) := M \max_{K \in \mathcal{F}_h} \left(h_K^{d/2} \omega^K(t) \eta_0^K(t) \right),
\]
and the parabolic part of the vicinity estimator

\[\varepsilon_{\infty,1}(t) := \int_0^t \varepsilon_{\infty,1}(s) \, ds, \quad \text{where} \quad \varepsilon_{\infty,1}(t) := M \max_{K \in \mathcal{T}_h} \left(\frac{h^{-d/2}}{2} \omega_K(t) \eta^K(t) \right). \]

These definitions allow us to introduce the proper estimator and the vicinity estimator, respectively, as

\[\varepsilon_2(t) := (\varepsilon_{2,0}(t)^2 + \varepsilon_{2,1}(t)^2)^{1/2} \quad \text{and} \quad \varepsilon_{\infty}(t) := \varepsilon_{\infty,0}(t) + \varepsilon_{\infty,1}(t). \]

We finally introduce the initial estimator and total estimator, respectively, as

\[\varepsilon_0 := \left((1 + 2\varepsilon_{\infty,0}(0)) A(0) + 2\varepsilon_{2,0}(0) \sqrt{A(0)} \right)^{1/2} \]

and

\[\varepsilon(t) := \left(\varepsilon_0^2 + \varepsilon_2(t)^2 + \varepsilon_{\infty}(t) \right)^{1/2}. \]

The motivation for our terminology will become clear in Theorem 3.6 below: there the vicinity estimator \(\varepsilon_{\infty} \) does not enter directly into the conditional estimate, but dictates a “closeness condition” that must be satisfied for the estimate to hold. This conditional estimate then involves the initial and proper estimators \(\varepsilon_0 \) and \(\varepsilon_2 \).

We are now ready to state the main results, whose proofs are spread through sections 4–6.

Theorem 3.4 (unconditional a posteriori estimate). Let \(u \) be the solution of Problem 1.1, and \(u_h \) the finite element solution of Problem 2.5. For all \(t \in [0, T] \) there exist \(C = C[u_h, f, t] \) and \(C' = C'[f, g, t] \) such that

\[C \leq \exp \int_0^t \left(2 \left\| \partial_t u_h(s) \right\|_{L^\infty(\Omega)}^2 + 4 \left\| \nabla \partial_t u_h(s) \right\|_{L^\infty(\Omega)}^2 \right) \, ds, \]

\[C' \leq \exp \left(\frac{1}{2} \left\| f(s) \right\|_{L^\infty(\Omega)}^2 \right) \left(\left\| Qg(0) \right\|_{L^1(\Omega)} + \left\| \partial_t g \right\|_{L^1(\partial \Omega \times (0,t))} \right), \]

\[\int_0^t \int_\Omega (V u_h - V u)^2 Qu + \frac{1}{2} \sup_{[0,t]} \int_\Omega \left| \nabla u_h - \nabla u \right|^2 Qu \leq C \left(\varepsilon_0^2 + 4\varepsilon_2(t)^2 + 8C' \varepsilon_{\infty}(t) \right). \]

Remark 3.5 (the sharpness of the unconditional estimate). The estimate (3.16) holds, regardless of whether the approximate solution \(u_h \) is close to or far from the exact solution \(u \). The presence of the vicinity estimator \(\varepsilon_{\infty} \) on the right-hand side is undesirable because, even under the most optimistic assumptions of regularity on \(u \), there is no indication that this estimator will have the same order of convergence, as \(h \) goes to zero, as the square of the geometric error on the left-hand side. In fact, the numerical tests described in section 7 bear strong evidence that \(\varepsilon_{\infty} \) does not decay with a sufficiently high power of \(h \). This means that the above estimate is not sharp and that it cannot be relied upon as a stopping criterion in an adaptive scheme. A crucial point of this paper is that this estimate can be improved, provided that \(u_h \) is sufficiently close to \(u \), as stated in the next theorem.
Theorem 3.6 (conditional a posteriori estimate). Let u be the solution of Problem 1.1, and u_h the finite element solution of Problem 2.5. For each $t \in [0, T]$, if
\begin{equation}
\mathcal{E}_\infty(t) \leq \frac{1}{8},
\end{equation}
then there exists a constant $C = C[u_h, t]$ such that
\begin{equation}
C \leq \exp \int_0^t \left(2 \| \partial_t u_h(s) \|_{L^\infty(\Omega)}^2 + 4 \| \nabla \partial_t u_h(s) \|_{L^\infty(\Omega)} \right) \, ds,
\end{equation}
\begin{equation}
\int_0^t \int_\Omega (V u_h - V u)^2 Qu + \frac{1}{2} \sup_{[0,t]} \int_\Omega |N u_h - N u|^2 Qu \leq C \left(\mathcal{E}_0^2 + 8 \mathcal{E}_2(t)^2 \right).
\end{equation}

Remark 3.7 (a posteriori nature of condition (3.17)). Theorem 3.6 is a conditional result, typical in nonlinear analysis. The condition (3.17) can be interpreted as follows: the approximate solution u_h needs to be sufficiently close to the exact solution u for the estimate to hold. The technique we use can be thought of as a linearization of the equation about u_h, instead of a linearization about u, which would be natural in an a priori setting. This leads to the important fact that condition (3.17) can be effectively verified since it involves exclusively a posteriori, and therefore computable, quantities. Thus, in a practical adaptive method where a stopping criterion is needed, Theorem 3.4 would be used in the early preasymptotic stages in order to get close enough to the exact solution; the estimate of Theorem 3.6 would then provide a sharper criterion once the algorithm enters a second stage in which the condition (3.17) is satisfied.

4. The error equation. We divide the proof of Theorems 3.4 and 3.6 into several steps that will spread over the next two sections. Here we introduce the residual-based energy technique and we formulate the error equation.

4.1. The residual. The residual is defined as the difference between the exact operator acting on the approximate solution and the exact operator acting on the exact solution. In our setting, the result has to be understood in the following weak sense:
\begin{equation}
\langle \mathcal{R} | \phi \rangle := \left(\frac{\partial_t u_h}{Qu_h} - \frac{\partial_t u}{Qu}, \phi \right) + \left(\frac{\nabla u_h}{Qu_h} - \frac{\nabla u}{Qu}, \nabla \phi \right) \quad \forall \phi \in \tilde{W}_1^1(\Omega).
\end{equation}
Here $\langle \cdot | \cdot \rangle$ stands for the duality pairing. The distribution \mathcal{R} is time-dependent and, owing to Assumption 2.1, $\mathcal{R}(t)$ is a bounded linear functional on $\tilde{W}_1^1(\Omega)$ for all $t \in [0, T]$. We will refer to \mathcal{R} as the residual functional. The use of (2.4) and an integration by parts in the space variable lead to the residual functional representation

\begin{equation}
\langle \mathcal{R} | \phi \rangle = \left(\frac{\partial_t u_h}{Qu_h} - f - \text{div} \left(\frac{\nabla u_h}{Qu_h} \right), \phi \right) + \left(\frac{\nabla u_h}{Qu_h}, \phi \right)_{\Sigma_h} \\
= \langle r, \phi \rangle + \langle j, \phi \rangle_{\Sigma_h} \quad \forall \phi \in \tilde{W}_1^1(\Omega),
\end{equation}
where the residual functions r and j are those introduced in section 3.1.

4.2. Galerkin orthogonality and the error equation. The starting point of our residual-based a posteriori estimation is exploiting the property that \mathcal{R} vanishes
on \tilde{V}_h. This is the so-called \textit{Galerkin orthogonality} property, which yields the following error equation:

\begin{equation}
\left\langle \frac{\partial_t u_h}{Q u_h} - \frac{\partial_t u}{Q u}, \phi \right\rangle + \left\langle \frac{\nabla u_h}{Q u_h} - \frac{\nabla u}{Q u}, \nabla \phi \right\rangle = \left\langle R | \phi - \phi_h \right\rangle
\end{equation}

for all $\phi \in \tilde{W}^1_1(\Omega)$, $\phi_h \in \tilde{V}_h$.

\textbf{4.3. Choice of the test function.} The energy technique relies on an appropriate choice of test functions ϕ and ϕ_h in (4.3). Let us denote by e the error

\begin{equation}
e(x, t) := u_h(x, t) - u(x, t)
\end{equation}

and make the following choices for the test functions:

\begin{align*}
\phi(x, t) &:= \partial_t e(x, t), \\
\phi_h(x, t) &:= I_h \phi(x, t),
\end{align*}

where I_h is the Scott–Zhang interpolation operator which will be briefly discussed in section 6.2 and section 6.3. For $\partial_t e$ to be admissible as a test function ϕ in (4.3), it must vanish on $\partial \Omega$, which is not necessarily true. This motivates the following temporary assumption, which will be removed in section 6.3 where we deal with general boundary data.

\textbf{Assumption 4.1 (exact boundary data resolution).} Until section 6.3, let either

(a) the boundary value g be approximated exactly by g_h, or
(b) g be time independent.

\textbf{5. Coercivity.} Our objective in this section is to derive a lower bound on the left-hand side of (4.3) with the choice made in (4.5). To achieve this objective we exhibit as much coercivity as the nonlinearity allows; we will make a liberal use of the word “coercivity” in this sense. The geometric error functions of time A and B, introduced in section 1.2, will be used extensively in this section and in the next one. We begin by stating some simple yet fundamental geometric relations observed by Dziuk.

\textbf{Lemma 5.1 (basic geometry [8]).} Given $p_1, p_2 \in \mathbb{R}^d$, if $q_i := (1 + |p_i|^2)^{1/2}$ and $n_i := (p_i; -1)/q_i \in \mathbb{R}^d$ for $i = 1, 2$, then the following geometric relations hold:

\begin{align*}
1 - \frac{1 + p_1 \cdot p_2}{q_1 q_2} &= \frac{1}{2} |n_1 - n_2|^2, \\
\left| \left(\frac{1}{q_1} - \frac{1}{q_2} \right) \left(\frac{p_1}{q_1} - \frac{p_2}{q_2} \right) \right| &\leq \frac{1}{2} |n_1 - n_2|^2, \\
\frac{|p_1 - p_2|}{q_1} &\leq (1 + |p_2|) |n_1 - n_2|.
\end{align*}

\textbf{Lemma 5.2 (Dziuk identity [8]).} If v and w are sufficiently differentiable functions on $\Omega \times [0, T]$, then

\begin{equation}
\frac{1}{2} \partial_t \left(|N v - N w|^2 Q w \right) = \left(\frac{\nabla v}{Q v} - \frac{\nabla w}{Q w} \right) \cdot \nabla (\partial_t v - \partial_t w) \\
- \nabla \partial_t v \cdot \left(\frac{\nabla v}{Q v} - \frac{\nabla w}{Q w} + \frac{\nabla v}{Q v} - \frac{1 + \nabla w \cdot \nabla v}{(Q v)^2} \frac{\nabla v}{Q v} \right).
\end{equation}
The first term in the left-hand side of (4.3) is handled through the following inequality.

Lemma 5.3 (coercivity of the velocity term). With the notation

$$\phi_1(t) := \frac{1}{2} \| \partial_t u_h(t) \|_{L^\infty(\Omega)}^2,$$

we have that, for all $t \in [0, T]$,

$$\left\langle \frac{\partial_t u_h}{Q_{u_h}} - \frac{\partial_t u}{Q_u}, \partial_t u_h - \partial_t u \right\rangle \geq \frac{1}{2} d_t B(t) - \phi_1(t).$$

Proof. Basic manipulations imply

$$\left\langle \frac{\partial_t u_h}{Q_{u_h}} - \frac{\partial_t u}{Q_u}, \partial_t u_h - \partial_t u \right\rangle = \int_\Omega (V_{u_h} - V_u)^2 Q_u + \int_\Omega \partial_t u_h \left(\frac{1}{Q_u} - \frac{1}{Q_{u_h}} \right) (V_{u_h} - V_u) Q_u$$

$$\geq d_t B(t) - \| \partial_t u_h \|_{L^\infty(\Omega)} \left(\int_\Omega \left| \frac{1}{Q_u} - \frac{1}{Q_{u_h}} \right| \sqrt{Q_u} |V_{u_h} - V_u| \sqrt{Q_u} \right)$$

$$\geq d_t B(t) - \| \partial_t u_h \|_{L^\infty(\Omega)} \left(\int_\Omega | \nabla u_h - \nabla u |^2 Q_u \right)^{1/2} \left(\int_\Omega (V_{u_h} - V_u)^2 Q_u \right)^{1/2}.$$

Consequently

$$\left\langle \frac{\partial_t u_h}{Q_{u_h}} - \frac{\partial_t u}{Q_u}, \partial_t u_h - \partial_t u \right\rangle \geq d_t B(t) - \frac{1}{2} d_t B(t) - \phi_1(t) A(t) = \frac{1}{2} d_t B(t) - \phi_1(t) A(t),$$

as asserted. \qed

Lemma 5.4 (coercivity for normals and gradients). With the notation

$$\phi_2(t) := \| \nabla \partial_t u_h(t) \|_{L^\infty(\Omega)},$$

we have that, for all $t \in [0, T]$,

$$\left\langle \frac{\nabla u_h}{Q_{u_h}} - \frac{\nabla u}{Q_u}, \nabla (\partial_t u_h - \partial_t u) \right\rangle \geq \frac{1}{2} d_t A(t) - \phi_2(t) A(t).$$

Proof. Integrating in space both sides of (5.4) and rearranging terms yields

$$\left\langle \frac{\nabla u_h}{Q_{u_h}} - \frac{\nabla u}{Q_u}, \nabla (\partial_t u_h - \partial_t u) \right\rangle = \frac{1}{2} d_t A(t)$$

$$+ \int_\Omega \nabla \partial_t u_h : \left(\frac{\nabla u}{Q_{u_h}} - \frac{\nabla u}{Q_u} + \frac{\nabla u_h}{Q_{u_h}} - \frac{1 + \nabla u \cdot \nabla u_h}{(Q_{u_h})^2} \frac{\nabla u_h}{Q_{u_h}} \right).$$

To show the result it is sufficient to show that the last integral above is bounded from below by $-\phi_2(t) A(t)$. To do this we add and subtract $-(Q u \nabla u_h)/(Q_{u_h})$ and rewrite this term as the sum of two integrals:

$$I_1 + I_2 := \int_\Omega \nabla \partial_t u_h : \left(\frac{\nabla u}{Q_{u_h}} - \frac{\nabla u}{Q_u} + \frac{\nabla u_h}{Q_{u_h}} - \frac{Q u \nabla u_h}{(Q_{u_h})^2} \right)$$

$$+ \int_\Omega \nabla \partial_t u_h : \left(\frac{Q u \nabla u_h}{(Q_{u_h})^2} - \frac{1 + \nabla u \cdot \nabla u_h}{(Q_{u_h})^2} \frac{\nabla u_h}{Q_{u_h}} \right).$$
The integrals in (5.9) are bounded, by using (5.2) for the first one,

\[I_1 \geq -\| \nabla \partial_t u_h \|_{L^\infty(\Omega)} \int_\Omega \left| \left(\frac{1}{Qu} - \frac{1}{Qu_h} \right) \frac{\nabla u_h}{Qu_h} - \frac{\nabla u}{Qu} \right| Qu \geq -\frac{\varphi_2(t)}{2} A(t), \]

and with the help of (5.1) for the second one,

\[I_2 \geq -\| \nabla \partial_t u_h \|_{L^\infty(\Omega)} \int_\Omega \left| \left(1 - \frac{\nabla u_h \cdot \nabla u}{Qu_h Qu} \right) Qu \frac{\nabla u_h}{(Qu_h)^2} \right| \geq -\frac{\varphi_2(t)}{2} A(t). \]

This proves the assertion. \(\square \)

Lemma 5.5 (estimate of the geometric terms). With the notation

\[\varrho(t) := \varrho_1(t) + \varrho_2(t), \]

we have that, for all \(t \in [0, T] \),

\[A(t) + B(t) \leq A(0) + 2 \int_0^t \varrho(s) A(s) \, ds + 2 \int_0^t \langle \mathcal{R}(s) | \partial_t (e - I_h e(s)) \rangle \, ds. \]

Proof. Using (4.5), (4.6), (5.6), and (5.8) in (4.3), we obtain

\[\frac{1}{2} (d_t A(t) + d_t B(t)) \leq \langle \mathcal{R} | \partial_t e(t) - I_h \partial_t e(t) + \varrho(t) A(t) \rangle \]

for all \(t \in [0, T] \). An integration in time over the interval \([0, t]\) yields the result. \(\square \)

6. **Bounding the residual by the estimators.** We prove in this section Theorems 3.4 and 3.6 by estimating \(\int_0^T \langle \mathcal{R} | \partial_t (e - I_h e) \rangle \) appearing in (5.11). We will denote by \(d' = d/(d - 1) \) the conjugate exponent of \(d \), the latter being the surface’s dimension. We start by stating two lemmas bearing a fundamental geometric relationship and an interpolation theory result, respectively.

Lemma 6.1 (Fierro–Veeser inequality [12]). Adopting the same notation as in Lemma 5.1, the following inequality holds:

\[|p_1 - p_2| \frac{1}{q_1} \leq 2 |n_1 - n_2| + |n_1 - n_2|^2 q_2. \]

Lemma 6.2 (Scott–Zhang interpolation [22]). If \(I_h \) denotes the averaging interpolation operator that was introduced by Scott and Zhang—called the Scott–Zhang interpolator in what follows—then the following interpolation inequalities hold:

\[\| \psi - I_h \psi \|_{L^d(K)} \leq C_1 \| \psi \|_{W^1_2(\mathcal{F}_h^1)}; \]
\[\| \psi - I_h \psi \|_{L^1(\partial K)} \leq 2C_2 \| \psi \|_{W^1_2(\mathfrak{N}_h^1)}, \]

where \(\mathcal{F}_h^1 \) is the \(\mathcal{F}_h \)-neighborhood of \(K \) defined in (2.13).

Remark 6.3. The particular choice of the norms in Lemma 6.2 is motivated by our wish for \(\sqrt{A(t)} \) to appear in an upper bound on the right-hand side of (5.11).

Indeed, estimating the residual \(\mathcal{R} \) in energy norms would typically lead to dealing with \(|\nabla u_h - \nabla u| \). In light of the geometric errors \(A \) and \(B \) in the left-hand side of (5.11), a straightforward idea would be to bound its \(L^2 \) norm, that is, \(|\nabla u_h - \nabla u|^2 \), from above by \(C |\nabla u_h - \nabla u|^2 Qu \), with the constant \(C = C[|u_h|] \) independent of \(u \).
(think of \(u_h \) being unrelated to \(u \) in this paragraph). The only practical way to derive such a bound would be a pointwise geometric relation like

\[
\frac{|p_1 - p_2|^2}{\kappa(p_1)|n_1 - n_2|^2 q_2} \leq 1,
\]

where \(p_1 = \nabla u_h, \) \(n_1 = N u_h, \) \(q_1 = Q u_h, \) the quantities with subscript 2 refer to \(u, \)
and \(\kappa \) is some function of \(p_1 \) only. Unfortunately this is not possible because (6.4) is
false. To see this, fix \(p_1 \) and observe that \(n_1 - n_2 \) is bounded; by letting \(|p_2| \to \infty, \)
we obtain, in contrast with (6.4),

\[
\frac{|p_1 - p_2|^2}{\kappa(p_1)|n_1 - n_2|^2 q_2} \geq C \frac{|p_1 - p_2|^2}{q_2} = O(|p_2|) \to \infty.
\]

This difficulty can be circumvented by using the \(L_1 \) norm of \(|\nabla u - \nabla u_h|, \) instead of the \(L_2 \) norm, and the Fierro–Veeser inequality (6.1), which reads

\[
|\nabla u_h - \nabla u| = (Q u_h)^2 \frac{|\nabla u_h - \nabla u|}{(Q u_h)^2} \leq (Q u_h)^2 (2 |N u_h - N u| + |N u_h - N u|^2 Q u).
\]

Notice that the last term is cumbersome because its power is too high—it is the “price to pay.” This term will yield a term of the form \(q(t) A(t) \) on the right-hand side which has to be handled carefully in order to close the estimate.

Recalling first the notation in section 1.2 and section 3.3, we now state and prove the central result of this paper.

Lemma 6.4 (residual estimate). The following inequality holds for all \(t \in [0, T] \) :

\[
A(t) + B(t) \leq \varepsilon_0^2 + 2 \hat{\delta}_{2,0}(t) A(t)^{1/2} + 2 \hat{\delta}_{\infty,0}(t) A(t)
+ 2 \int_0^t \hat{\delta}_{2,1}(s) A(s)^{1/2} \, ds + 2 \int_0^t \hat{\delta}_{\infty,1}(s) A(s) \, ds + 2 \int_0^t q(s) A(s) \, ds.
\]

Proof. Apply the representation formula (4.2) with \(\phi = \partial_t \delta_h e, \) where \(\delta_h e(t) := e(t) - I_h e(t), \) integrate by parts in time, and use the commutativity property \(\partial_t I_h = I_h \partial_t, \) to obtain

\[
\int_0^t \langle \mathcal{A}(s) | \partial_t \delta_h e(s) \rangle \, ds = \int_0^t \langle r(s), \partial_t \delta_h e(s) \rangle + \langle j(s), \partial_t \delta_h e(s) \rangle \Sigma_h \, ds
\]

\[
= \left[\langle r, \delta_h e \rangle + \langle j, \delta_h e \rangle \Sigma_h \right]_0^t - \int_0^t \langle \partial_t r(s), \delta_h e(s) \rangle + \langle \partial_t j(s), \delta_h e(s) \rangle \Sigma_h \, ds.
\]

Hence

\[
\int_0^t \langle \mathcal{A}(s) | \partial_t \delta_h e(s) \rangle \, ds
\]

\[
\leq \sum_{K \in \mathcal{T}_h} \left(\sum_{s \in [0, t]} \left(||r(s)||_{L_d(K)} ||\delta_h e(s)||_{L_d(K)} + \frac{1}{2} ||j(s)||_{L_{\infty}(\partial K)} ||\delta_h e(s)||_{L_1(\partial K)} \right) \right)

+ \int_0^t ||\partial_t r(s)||_{L_d(K)} ||\delta_h e(s)||_{L_d(K)} + \frac{1}{2} ||\partial_t j(s)||_{L_{\infty}(\partial K)} ||\delta_h e(s)||_{L_1(\partial K)} \, ds.
\]
Owing to the approximation properties of the Scott–Zhang interpolator in Lemma 6.2, and using the local indicators η^K introduced in Definition 3.2, we may write

\begin{align}
\int_0^t \langle \mathcal{R}(s) | \partial_t \delta_h e(s) \rangle \, ds & \leq \sum_{K \in \mathcal{F}_h} h_K^{-d/2} \left(\eta_0^K(0) \| \nabla e(0) \|_{L^1(\mathcal{W}_h^h)} + \eta_0^K(t) \| \nabla e(t) \|_{L^1(\mathcal{W}_h^h)} \right) \\
& \quad + \int_0^t \eta_1^K(s) \| \nabla e(s) \|_{L^1(\mathcal{W}_h^h)} \, ds.
\end{align}

We proceed by observing that inequality (6.6) implies

\begin{align}
\| \nabla e(t) \|_{L^1(\mathcal{W}_h^h)} & \leq \sup_{w_h^h} (Qu_h)^2 \int_{w_h^h} \left(\frac{2 \mathcal{N}(t)}{\sqrt{Qu(t)}} + \mathcal{N}(t)^2 \right),
\end{align}

where, in order to simplify notation, we introduce the shorthand

\begin{align}
\mathcal{N} := |Nu_h - Nu| \sqrt{Qu}.
\end{align}

We continue the bound in (6.8) by using (6.9) as follows:

\begin{align}
\int_0^t \langle \mathcal{R}(s) | \partial_t e(s) - I_h \partial_t e(s) \rangle \, ds & \\
& \leq \sum_{K \in \mathcal{F}_h} \eta_0^K(0) h_K^{-d/2} \omega_K(0) \int_{w_h^h} \left(\frac{2 \mathcal{N}(0)}{\sqrt{Qu(0)}} + \mathcal{N}(0)^2 \right) \\
& \quad + \sum_{K \in \mathcal{F}_h} \eta_0^K(t) h_K^{-d/2} \omega_K(t) \int_{w_h^h} \left(\frac{2 \mathcal{N}(t)}{\sqrt{Qu(t)}} + \mathcal{N}(t)^2 \right) \\
& \quad + \sum_{K \in \mathcal{F}_h} \int_0^t \eta_1^K(s) h_K^{-d/2} \omega_K(s) \int_{w_h^h} \left(\frac{2 \mathcal{N}(s)}{\sqrt{Qu(s)}} + \mathcal{N}(s)^2 \right) \, ds.
\end{align}

The first two terms in (6.11) can be bounded at once through the following inequality (where we simply take $t = 0$ for the first term):

\begin{align}
\sum_{K \in \mathcal{F}_h} \eta_0^K(t) h_K^{-d/2} \omega_K(t) \int_{w_h^h} \left(\frac{2 \mathcal{N}(t)}{\sqrt{Qu(t)}} + \mathcal{N}(t)^2 \right) \\
& \leq 2 \left(\sum_{K \in \mathcal{F}_h} \eta_0^K(t)^2 h_K^{-d/2} \omega_K(t)^2 | w_h^h \sup_{w_h^h} \frac{1}{Qu(t)} \right)^{1/2} \left(\sum_{K \in \mathcal{F}_h} \int_{w_h^h} \mathcal{N}(t)^2 \right)^{1/2} \\
& \quad + \max_{K \in \mathcal{F}_h} \left(\eta_0^K(t) h_K^{-d/2} \omega_K(t) \right) \left(\sum_{K \in \mathcal{F}_h} \int_{w_h^h} \mathcal{N}(t)^2 \right).
\end{align}

Likewise, the last term in (6.11) is bounded by

\begin{align}
\int_0^t \left(2 \left(\sum_{K \in \mathcal{F}_h} \eta_1^K(s)^2 h_K^{-d/2} \omega_K(s)^2 | w_h^h \sup_{w_h^h} \frac{1}{Qu(s)} \right)^{1/2} \left(\sum_{K \in \mathcal{F}_h} \int_{w_h^h} \mathcal{N}(s)^2 \right)^{1/2} \\
& \quad + \max_{K \in \mathcal{F}_h} \left(\eta_1^K(s) h_K^{-d/2} \omega_K(s) \right) \left(\sum_{K \in \mathcal{F}_h} \int_{w_h^h} \mathcal{N}(s)^2 \right) \right) \, ds.
\end{align}
To conclude the proof, we observe that the shape-regularity of \(\mathcal{T}_h \) (2.12) implies the existence of two constants \(\gamma_0 \in \mathbb{R}^+ \) and \(M \in \mathbb{Z}^+ \), depending only on \(\sigma_0 \) and the space dimension \(d \), such that the number of simplexes of \(\mathcal{T}_h \) contained in \(\mathcal{W}_h \) does not exceed \(M \) and \(|\mathcal{W}_h| \leq M \gamma_0^2 h_K^d \). Defining \(\gamma := 2M \gamma_0 \), it follows that

\[
\int_0^t \langle \mathcal{R}(s) | \partial_t \delta_h e(s) \rangle \, ds
\]

\[
\leq \gamma \left(\sum_{K \in \mathcal{T}_h} \alpha^K(t) \eta^K_0(t)^2 \right)^{1/2} A(0)^{1/2} + M \max_{K \in \mathcal{T}_h} \left(h_K^{-d/2} \omega^K(0) \eta^K_0(0) \right) A(0)
\]

\[+ \gamma \left(\sum_{K \in \mathcal{T}_h} \alpha^K(t) \eta^K_0(t)^2 \right)^{1/2} A(t)^{1/2} + M \max_{K \in \mathcal{T}_h} \left(h_K^{-d/2} \omega^K(t) \eta^K_0(t) \right) A(t)
\]

\[+ \gamma \int_0^t \left(\sum_{K \in \mathcal{T}_h} \alpha^K(s) \eta^K_1(s)^2 \right)^{1/2} ds + M \int_0^t \max_{K \in \mathcal{T}_h} \left(h_K^{-d/2} \omega^K(s) \eta^K_1(s) \right) A(s) \, ds.
\]

Recalling Definition 3.3, we combine the last inequality with (5.11) and obtain (6.7), as asserted. \(\Box \)

Next we prove the theorems stated in section 3 with the aid of Lemma 6.4. For (6.7) to be useful we must control the terms containing \(A(t) \) on the right-hand side by those on the left-hand side. We distinguish two main ways of doing this. The first way, which is direct and somewhat naive, uses the stability Lemma 2.4 and leads to the unconditional a posteriori estimate in Theorem 3.4. The second, more careful, way results in the conditional but sharper estimate in Theorem 3.6. To shorten the discussion, we first show the latter and then the former, which is simpler.

6.1. Proof of Theorem 3.6

Our starting point is inequality (6.7). Introduce the notation \(A^*(t) := \sup_{[0,t]} A \), apply the Hölder inequality, and use the Young inequality with a parameter \(\mu \) at our disposal, to obtain

\[
A(t) + B(t) \leq \varepsilon_0^2 + \mu A(t) + \frac{1}{\mu} \dot{\varepsilon}_{2,0}(t)^2 + \mu A^*(t) + \frac{1}{\mu} \dot{\varepsilon}_{2,1}(t)^2
\]

\[+ 2 \dot{\varepsilon}_{\infty,0}(t) A(t) + 2 A^*(t) \varepsilon_{\infty,1}(t) + 2 \int_0^t \varphi(s) A(s) \, ds.
\]

Choosing \(\mu = 1/8 \), taking the supremum over \([0,t]\) on both sides; recalling that \(B \), \(\dot{\varepsilon}_{2,1} \), and \(\varepsilon_{\infty,1} \) are nondecreasing; and using Definition 3.3, we can write

\[
A^*(t) + B(t) \leq \varepsilon_0^2 + \frac{1}{4} A^*(t) + 8 \varepsilon_2(t)^2 + 2 \varepsilon_\infty A^*(t) + 2 \int_0^t \varphi(s) A^*(s) \, ds.
\]

The condition (3.17), i.e., \(\varepsilon_{\infty} \leq 1/8 \), and the last inequality imply

\[
\frac{1}{2} A^*(t) + B(t) \leq \varepsilon_0^2 + 8 \varepsilon_2(t)^2 + 2 \int_0^t \varphi(s) A^*(s) \, ds.
\]

To conclude the proof, it suffices now to apply the Gronwall lemma in the above inequality, and to recall (5.10), (5.5), and (5.7), in order to derive (3.18) and (3.19). \(\Box \)
6.2. Proof of Theorem 3.4. The proof is a direct combination of Lemma 6.4 and the elementary fact that

\begin{equation}
A(t) = \int_{\Omega} |\mathbf{N}u_h(t) - \mathbf{N}u(t)|^2 Qu(t) \leq 4 \int_{\Omega} Qu(t).
\end{equation}

The stability Lemma 2.4 provides us with an upper bound on the last integral in terms of the data \(f \) and \(g \). To conclude, it is enough to proceed along the lines of section 6.1 with \(\mu = 1/4 \) and apply the Gronwall lemma.

Remark 6.5 (slowly varying solutions). Notice that if \(\int_{0}^{t} \varrho \) is small enough (for which it is necessary for \(\| \partial_t u_h \|_{L^1_{t} (W^{1,p}_{\kappa})} \) to be small), the Gronwall lemma argument is not needed and the exponential bound on \(C \) can be dropped. This is particularly true for solutions that are close to stationary points, i.e., if \(\partial_t f \) and \(\partial_t g \) are very small. We will not pursue this issue further in this paper, but we remark that this condition is also a posteriori and could be checked automatically if needed.

6.3. Time-dependent Dirichlet boundary data. As promised earlier, we now remove Assumption 4.1; that is, we allow

\begin{equation}
\partial_t (u_h - u)|_{\partial\Omega} = \partial_t (g_h - g) \neq 0.
\end{equation}

We study the case where the boundary value \(g \) is discretized as follows:

\begin{equation}
\tilde{g}_h := I_h \tilde{g} \quad \text{and} \quad g_h := \tilde{g}_h|_{\partial\Omega},
\end{equation}

where \(I_h \) it the Scott–Zhang interpolator of Lemma 6.2 and \(\tilde{g} \) denotes the extension of \(g \) to the whole domain \(\Omega \) [22, eq. (5.5)]. The error \(e = u_h - u \) can thus be decomposed as follows:

\begin{equation}
e = e_0 + \epsilon := (u_h - \tilde{g}_h - u + \tilde{g}) + (\tilde{g}_h - \tilde{g}).
\end{equation}

The residual \(\mathcal{R} \), as defined in (4.1), can be naturally extended to be a functional on \(W^1_1(\Omega) \). It follows that if we take \(\phi = \partial_t e \) in (4.3), we have

\begin{equation}
\langle \mathcal{R} | \partial_t e \rangle = \langle \mathcal{R} | \partial_t e_0 \rangle + \langle \mathcal{R} | \partial_t \epsilon \rangle = \langle \mathcal{R} | \partial_t e_0 - I_h \partial_t e_0 \rangle + \langle \mathcal{R} | \partial_t \epsilon \rangle.
\end{equation}

Notice that a Galerkin orthogonality argument can be applied directly to the part with the admissible error \(e_0 \in W^1_1 \). As for the last term in (6.19), we use the \(V_h \)-invariance property of the Scott–Zhang interpolator \(I_h \), namely \(I_h I_h \psi = I_h \psi \) for all \(\psi \in W^1_1(\Omega) \), and (6.17) to conclude that

\begin{align*}
I_h \epsilon &= I_h \bar{g}_h - I_h \tilde{g} = I_h \bar{g}_h - I_h \tilde{g} = 0.
\end{align*}

This implies that \(\partial_t I_h \epsilon = 0 \), and thus \(\langle \mathcal{R} | \partial_t \epsilon \rangle = \langle \mathcal{R} | \partial_t (\epsilon - I_h \epsilon) \rangle \), whence the following representation formula follows from (6.19) and elementwise integration by parts:

\begin{equation}
\langle \mathcal{R} | \partial_t \epsilon \rangle = \langle r, \partial_t e - I_h \partial_t e \rangle + \langle j, \partial_t e - I_h \partial_t e \rangle + \langle \beta - \beta_h, \partial_t \epsilon \rangle_{\partial\Omega},
\end{equation}

where \(\beta := (\nabla u_h \cdot \nu)/Qu \) and \(\beta_h = (\nabla u_h \cdot \nu)/Qu_h \).

In order to obtain a lower bound on the left-hand side of (6.20), which is equal to the left-hand side of (4.3) with \(\phi = \partial_t e \), we proceed in the same fashion as in section 5 and thereby we again derive (5.11). The first two terms on the right-hand
side of (6.20) can be dealt with exactly as in section 6, while the fact that \(\beta, \beta_h \leq 1 \) implies the following bound for the last term:

\[
(6.21) \quad \langle \beta - \beta_h, \partial_t \varepsilon \rangle_{\partial \Omega} \leq 2 \| \partial_t \varepsilon \|_{L^1(\partial \Omega)} = 2 \| \partial_t g - \partial_t g_h \|_{L^1(\partial \Omega)}.
\]

This proves the following generalization of Lemma 6.4.

Lemma 6.6 (residual estimate with boundary values). With the notation \(E_0(t) := \int_0^t \| \partial_t (g - g_h) \|_{L^1(\partial \Omega)} \), we have that, for all \(t \in [0, T] \),

\[
A(t) + B(t) \leq E_0^2 + 2E_0(t) + 2\tilde{\varepsilon}_{2,0}(t)A(t)^{1/2} + 2\tilde{\varepsilon}_{\infty,0}A(t)
\]

\[
+ 2 \int_0^t \tilde{\varepsilon}_{2,1}(s)A(s)^{1/2} ds + 2 \int_0^t \tilde{\varepsilon}_{\infty,1}(s)A(s) ds + 2 \int_0^t g(s)A(s) ds.
\]

This lemma enables us to obtain extended versions of Theorems 3.6 and 3.4 by just adding \(E_0 \) to the estimators therein. We omit the statement of these results as they can be written in a straightforward manner.

7. Numerical experiments. We now present some numerical computations that we have performed in order to confirm the reliability and test the sharpness of the error estimates derived in Theorems 3.6 and 3.4. Many of the comments in this section are given as figure captions in order to make the reading easier.

Definition 7.1 (fully discrete semi-implicit scheme [7, 8]). Let \(N \in \mathbb{Z}^+ \) and \(0 = t_0 < t_1 < \cdots < t_N = T \) be a partition of the time interval \([0, T]\). For each \(n \in [1 : N] \), denote by \(\tau_n := t_n - t_{n-1} \) the \(n \)th step size. Given \(U^n_h \) (an approximation of \(g(0) \)) and \(\tilde{g}_h^n \) (the extension to \(\Omega \) of an interpolant of \(g(t_n) \)), find a sequence of functions \(U^n_h, \tilde{g}_h^n \in \mathcal{V}_h \) such that, for each \(n \in [1 : N] \),

\[
\begin{align*}
(7.1) & \quad \left\langle \nabla U^n_h, \nabla \phi_h \right\rangle + \left\langle \frac{U^n_h}{\tau_n QU^{n-1}_h}, \phi_h \right\rangle = \left\langle \frac{U^{n-1}_h}{\tau_n QU^{n-1}_h} + f^n, \phi_h \right\rangle \quad \forall \phi_h \in \mathcal{V}_h, \\
(7.2) & \quad U^n_h - \tilde{g}_h^n \in \mathcal{V}_h.
\end{align*}
\]

We implemented this scheme, which is due to Dziuk [8], with the help of the C finite element toolbox ALBERT of Schmidt and Siebert [21]. All the computations are based on piecewise linear (\(P^1 \)) finite elements.

7.1. Main goal of the numerical results. With reference to Definition 3.3, we introduce the full proper estimator defined as \(\mathcal{E} := (\mathcal{E}_0^2 + \mathcal{E}_2^2)^{1/2} \), and we recall that we denote by \(\mathcal{E}_\infty \) the vicinity estimator, by \(\mathcal{E} \) the total estimator, and by \(E \) the geometric error, introduced in (1.9). With this notation the unconditional estimate of Theorem 3.4 can be written as

\[
(7.3) \quad E \leq C\mathcal{E} = C \left(\mathcal{E}_0^2 + \mathcal{E}_2^2 + \mathcal{E}_\infty \right)^{1/2},
\]

while the conditional estimate provided by Theorem 3.6 can be summarized as follows:

\[
(7.4) \quad \mathcal{E}_\infty \leq c \quad \Rightarrow \quad E \leq C\mathcal{E}.
\]

The main goal of our numerical experiments is to see that the error bound (7.4) is sharp whereas (7.3) is not. This will be illustrated by comparing the experimental order of convergence (EOC) of \(E, \mathcal{E} \), and \(\mathcal{E}_\infty^{1/2} \). The EOC is defined as follows: for a given finite sequence of uniform triangulations \(\{ T_h \}_{i=1, \ldots, I} \) of meshsize \(h_i \), the EOC
of a corresponding sequence of some triangulation-dependent quantity $e(i)$ (like an error or an estimator) is itself a sequence defined as

$$EOC_e(i) = \frac{\log(e(i+1)/e(i))}{\log(h(i+1)/h(i))}.$$

Notice that for (7.4) to be sharp it is sufficient to have $EOC E \approx O E C \bar{E}$ and $\mathcal{E}_\infty = o(1)$, as i increases—this will be satisfied in our numerical tests whereas for (7.3) to be sharp it is necessary to have the stronger requirement that $EOC E \approx O E C \mathcal{E}_\infty^{1/2}$—this will fail in our numerical tests. We will focus also on understanding when $\mathcal{E}_\infty = o(1)$ might fail and on computing the effectivity index, which is a practical bound on the constant \bar{C}, and is defined as E/\mathcal{E}, at the finest level I. Since we view the errors and the estimators as functions of time, the EOC and the effectivity index are also presented as functions of time.

Remark 7.2 (practical version of the error estimators). To test the reliability and the sharpness of the upper bound given by the estimators, we compute a fully discrete version of the spatially discrete global estimators introduced in Definition 3.3. These estimators are sums of the local indicators

$$\eta^K_i(t) := h_K^{d/2} (C_1 \left\| (\partial_t)^i \phi(t) \right\|_{L^2(K)} + C_2 \left\| (\partial_h)^i j(t) \right\|_{L^\infty(\partial K)}), \quad i = 0, 1,$$

which involve the L_∞ norm that is not so practical. Since we use piecewise linear elements, the jump residuals are constant functions on each edge, and thus the L_∞ norm can be replaced by the L_2 norm using the inverse estimate

$$\|v\|_{L^\infty(\partial K)} \leq C h_K^{(1-d)/2} \|v\|_{L^2(\partial K)}$$

for all v that are constants on each edge of ∂K. It is hence legitimate to use, instead of η^K_i, the handler local indicators

$$\tilde{\eta^K_i}(t) := h_K^{d/2} C_1 \left\| (\partial_t)^i \phi(t) \right\|_{L^2(K)} + h_K^{1/2} C_2 \left\| (\partial_h)^i j(t) \right\|_{L^2(\partial K)}), \quad i = 0, 1.$$

All the integrals are in fact quadratures: while ALBERT’s built-in Gaussian quadrature is used to approximate the space integrals, a simple midpoint rule is used for the time integrals. Time derivatives are replaced by backward finite differences.

Remark 7.3 (the discrete initial condition). In our computations, we take the minimal surface projection for the discrete initial values, i.e., $U_h^0 := u_h(0) = M_h g(0)$, where $M_h v$ is defined, for each $v \in W_1^1(\Omega)$, as the unique function in V_h such that

$$\left\langle \nabla M_h v, \nabla \phi_h \right\rangle = \left\langle \nabla v, \nabla \phi_h \right\rangle \quad \forall \phi_h \in \mathcal{V}_h,$$

and that interpolates v on the boundary.

This choice of the discrete initial value reduces the initial transients that can occur with other choices for the discrete initial values such as Lagrange interpolation.

Example 7.4 (smooth exact solution on a square). Our first series of tests use the following exact solution as a benchmark:

$$u(x, y; t) = t(\sin(t) - \sin(t - x(1 - x)y(1 - y))), \quad (x, y, t) \in [0, 1]^2 \times [0, 8].$$

The function u is smooth, it has zero initial and boundary values, which allows us to focus on the effect of the estimators only, and it is the solution of Problem 1.1
where the right-hand side f is obtained by applying the differential operator of (1.2) on u. We performed a series of computations, on uniform meshes, with the meshsizes $h_i = (0.5)^i$ for $1 \leq i \leq 6$. We report the results in the form of graphs, where the abscissa always denotes the time variable; this allows us to track the behavior of the errors and estimators in time. Figure 7.1 shows the behavior of the exact spatial errors, namely, the geometric errors and those in the customary Sobolev norms for evolution equations. Figure 7.2 shows the behavior of the proper and vicinity estimators with respect to time.

As shown by the right-hand subfigure in Figure 7.1, the EOC $E \approx 1$—this is to be expected from the a priori results, derived in the case of smooth solutions [8]. Although the normal velocity error tends to decrease faster, the geometric error decreases like the geometric energy error, which has order 1.

The sharpness of estimate (7.4) can be seen from the fact that $\text{EOC} \tilde{\mathcal{E}} \approx 1$ and that $\mathcal{E}_\infty \to 0$. On the other hand, we notice that $\text{EOC} \mathcal{E}_\infty \leq 1$, which implies that $\text{EOC}((\mathcal{E}_\infty^{1/2}) < \text{EOC} E$, and thus indicates that the unconditional estimate (7.3) is not sharp.

The effectivity index \tilde{C}, relative to the estimate (7.4), is plotted in Figure 7.3(a) as a function of time. In this example, the effectivity index is bounded in time, and
we do not detect the exponential behavior predicted by the worst-case-scenario bound in (3.19).

Example 7.5 (shrinking spherical segment). This second numerical example is inspired by a simple geometric situation. A sphere that moves by mean curvature flow shrinks to a point in finite time [14]. If we assume that the initial radius of the sphere equals 2 and that the center is fixed at (0, 0, 0), then the segment of the surface that lies above the square \([0, 1] \times [0, 1] \times \{0\} \in \mathbb{R}^3\) is the graph of the function

\[
(7.11) \quad u(x, t) = \sqrt{4 - 4t - |x|^2}, \quad (x, t) \in [0, 1]^2 \times [0, 0.5].
\]

The function \(u\) thus constitutes a solution of Problem 1.1 with zero right-hand side \(f\) and time-dependent Dirichlet boundary value \(g\). This is an interesting example because of a blow-up of the gradient which occurs at the space-time boundary point \((1, 1; 1/2)\).
Fig. 7.3. Effectivity indexes for Examples 7.4 and 7.5. These indexes, which are defined for the finest mesh, are numerical realizations of the constants on the right-hand side of (3.16) or (3.18). Panel (a) refers to the smooth exact solution of Example 7.4; the effectivity index behaves well in time. Panel (b) shows the effectivity index for the proper estimator 7.5, which has a blow-up at time \(t = 0.5 \). Consequently, the exponential behavior predicted for the factor \(C \) in Theorem 3.6 might be sharp. The behavior of the graph in (b) close to \(t = 0.5 \) is to be taken with care, though, as the vicinity estimator blows up there according to Figure 7.5, and thus the conditional estimate is not guaranteed to hold anymore.

Fig. 7.4. Sobolev norm errors and geometric errors for the shrinking sphere of Example 7.5. The different gray tones correspond to decreasing meshsize \(h \). In this example a blow-up in the gradient occurs at the boundary at time \(t = 0.5 \).
Fig. 7.5. Estimators and EOC vs. time for the shrinking sphere segment of Example 7.5. We exhibit the behavior of the proper estimator in the upper row and that of the vicinity estimator in the lower row. Darker gray tones correspond to decreasing meshsizes h. We can observe two stages as time approaches the blow-up $t = 0.5$. In the first stage, the same observations made for Example 7.4 are valid in that $\text{EOC} \tilde{E} \approx \text{EOC} E$ and $E_\infty \to 0$ (justifying once more the need for Theorem 3.6).

In the second stage, the vicinity estimator E_∞ exhibits a blow-up, which means that the condition (3.17) of Theorem 3.6 is violated and that we can no longer rely on the proper estimator \tilde{E}. The vicinity estimator blow-up can be interpreted as numerical evidence of the boundary gradient blow-up occurring at $t = 0.5$.

Despite this singular behavior, the function u still satisfies Assumption 2.1, and our a posteriori error analysis applies. Notice that the a priori error analysis of Deckelnick and Dziuk [7, Prop. 3] does not apply in this case because of the overly stringent regularity assumptions. This example allows us to appreciate the exponential worst-case-scenario bound on C (factor C in Theorem 3.6), as that bound is expected to behave like $\exp(1/\sqrt{0.5 - t})$ as $t \to 0.5$. Numerical solutions have been computed on uniform triangulations with meshsizes $h_i = (0.5)^i$, $i = 2, \ldots, 7$. The type of data we report is similar to that in section 7.4: the errors and their asymptotic behavior are reported in Figure 7.4, while Figure 7.5 shows the behavior of the estimators. We refer to the caption for a comment on the blow-up at $t = 0.5$ and its effect on the estimators and estimate validity. In Figure 7.3(b) we report the effectivity index of the proper estimator, which justifies in part the exponential behavior predicted by the theory. Notice that because of the blow-up behavior, the effectivity index is not so meaningful in the last part of the graph, close to $t = 0.5$, where the vicinity estimator is too big.
Acknowledgments. We express our thanks to Gerhard Dziuk for fruitful discussions, Kunibert Siebert and Alfred Schmidt for introducing us to albert [21], and Claudio Verdi for his advice and support during the stay of O. Lakkis at the Dipartimento di Matematica, Università di Milan, Italy. We are also grateful to the Isaac Newton Institute, Cambridge, UK, where this work was finished. The program Computational Challenges in PDEs 2003 at the Isaac Newton Institute provided excellent support as well as a stimulating and friendly scientific environment. Finally, we thank the referees for their careful reading and constructive criticism.

REFERENCES

