Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus

Wang, Yi, Long, Charles N, Mather, James H and Liu, Xiaodong (2011) Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus. Climate Dynamics, 36 (3-4). pp. 431-449. ISSN 0930-7575

Full text not available from this repository.


Madden-Julian Oscillation (MJO) signals have been detected using highly sampled observations from the U.S. DOE ARM Climate Research Facility located at the Tropical Western Pacific Manus site. Using downwelling shortwave radiative fluxes and derived shortwave fractional sky cover, and the statistical tools of wavelet, cross wavelet, and Fourier spectrum power, we report finding major convective signals and their phase change from surface observations spanning from 1996 to 2006. Our findings are confirmed with the satellite-gauge combined values of precipitation from the NASA Global Precipitation Climatology Project and the NOAA interpolated outgoing longwave radiation for the same location. We find that the Manus MJO signal is weakest during the strongest 1997-1998 El Nio Southern Oscillation (ENSO) year. A significant 3-5-month lead in boreal winter is identified further between Manus MJO and NOAA NINO3.4 sea surface temperature (former leads latter). A striking inverse relationship is found also between the instantaneous synoptic and intraseasonal phenomena over Manus. To further study the interaction between intraseasonal and diurnal scale variability, we composite the diurnal cycle of cloudiness for 21-MJO events that have passed over Manus. Our diurnal composite analysis of shortwave and longwave fractional sky covers indicates that during the MJO peak (strong convection), the diurnal amplitude of cloudiness is reduced substantially, while the diurnal mean cloudiness reaches the highest value and there are no significant phase changes. We argue that the increasing diurnal mean and decreasing diurnal amplitude are caused by the systematic convective cloud formation that is associated with the wet phase of the MJO, while the diurnal phase is still regulated by the well-defined solar forcing. This confirms our previous finding of the anti-phase relationship between the synoptic and intraseasonal phenomena. The detection of the MJO over the Manus site provides further opportunities in using other ground-based remote sensing instruments to investigate the vertical distributions of clouds and radiative heatings of the MJO that currently is impossible from satellite observations.

Item Type: Article
Schools and Departments: School of Global Studies > Geography
Depositing User: Yi Wang
Date Deposited: 06 Feb 2012 15:19
Last Modified: 04 Apr 2012 09:19
📧 Request an update