Dynamics of assisted quintessence

Article (Unspecified)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/1128/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Dynamics of assisted quintessence

Soo A Kim, 1 Andrew R. Liddle, 1 and Shinji Tsujikawa 2

1 Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom
2 Gunma National College of Technology, 580 Toriba, Maebashi, Gunma 371 8530, Japan

(Dated: April 8, 2006)

We explore the dynamics of assisted quintessence, where more than one scalar field is present with the same potential. For potentials with tracking solutions, the fields naturally approach the same values — in the context of obtaining equations of state close enough to the cosmological constant value \(w = -1 \) to satisfy observational bounds. One strategy is to ensure that the quintessence energy density starts at such a low value that the field only begins evolving close to the present, but such tuning is hardly more satisfactory than a cosmological constant. The alternative is for the field to evolve significantly, ideally exploiting a ‘tracker’ behaviour rendering the late-time evolution almost independent of initial conditions. Unfortunately however this is viable only for very particular potentials: amongst monotonic potentials, exponentials do not give acceleration and power-laws can give negative enough \(w \) only for exponents well below 2. Among the potentials regarded as giving satisfactory phenomenology, many in fact feature a minimum tuned to match the observed value of the cosmological constant.

In this paper we investigate whether this situation might be alleviated by allowing the quintessence to arise from several fields, which we assume to have the same potential energies. While our interest is primarily phenomenological, we note that such situations may arise from higher-dimensional theories; in fact there are many dynamical modulus fields in string theory corresponding to the size of compactified dimensions. In the context of early Universe inflation, such a set of fields has been shown to give the phenomenon of assisted inflation [3], whereby they may collectively drive inflation even if each individual field has too steep a potential to do so on its own, i.e. yielding an effective equation of state closer to \(w = -1 \). It is therefore worth considering the possibility of assisted quintessence behaviour, in order to see whether it may be better able to match observations. Assisted quintessence is particularly attractive in the context of tracking models, as each field will separately converge onto the tracking solution making it entirely natural that they all play a dynamical role.

In this paper we will investigate some aspects of assisted quintessence, mostly restricting ourselves to the simplest case where each field has the same potential and always assuming there are no interactions between fields. The most closely-related paper is that of Blais and Polarski [4], who analyzed several multi-field quintessence models both analytically and numerically, though with a different focus directed mainly at attempting to realize models where the acceleration is a transient phenomenon. We will primarily study the exponential and inverse power-law cases in detail, in the former case considering different exponents for the two potentials as already extensively analyzed by Coley and van den Hoogen [5]. In this paper we will also provide an algorithm for relating assisted quintessence to an equivalent single-field model under more general circumstances.

Our scenario is distinct from two types of scenario already extensively investigated in the literature. One is the double exponential potential models of Refs. [6, 7], where there was only a single field (Ref. [6] briefly mentioned a multiple-field case but not with uncoupled fields). Another is the two-field models of dark energy which have received some attention recently as a way of crossing the cosmological constant boundary \((w = -1) \) to give rise to a phantom behaviour at late times [8, 9, 10]. Unlike our case, at least one of those fields must have a negative kinetic energy.

II. ASSISTED QUINTESSENCE

If one accepts the possibility of multiple fields, particularly sharing the same form of potential \(V(\phi_i) \), then...
the idea of assisted quintessence emerges very naturally provided the potentials have tracker solutions for at least some values of the fields. Tracker solutions arise when the fields are initially sub-dominant as compared to a perfect fluid, the field contribution to the Friedmann equation then being neglected to give equations of the form

$$H^2 \simeq \frac{8\pi}{3m_{Pl}^2} \rho_f\,,$$ \hspace{1cm} (1)$$

$$\ddot{\phi}_i = -3H\dot{\phi}_i - \frac{dV}{d\phi_i}\,,$$ \hspace{1cm} (2)$$

where \(H \) is the Hubble rate, \(m_{Pl} \) is the Planck mass and a dot denotes the derivative with respect to a cosmic time \(t \). Here the fluid density \(\rho_f \) might for instance be broken up into matter and radiation components \(\rho_m \) and \(\rho_r \). In this set-up, the scalar fields are completely unaware of each other’s existence (their normal channel of communication being via the Friedmann equation), and hence separately evolve onto the tracker solution in response to the fluid. At sufficiently-late times one would therefore have all the \(\phi_i \) equal to each other, and hence of equal potential energy.

For an individual field \(\phi \) with potential \(V(\phi) \), whether or not there is tracking behaviour can be determined from the value of the function

$$\Gamma \equiv \frac{V V''}{V'^2}\,,$$ \hspace{1cm} (3)$$

where a prime represents the derivative in terms of \(\phi \). Solutions converge to a tracker provided that it satisfies \(\Gamma > 1 - (2 - \gamma)/(4 + 2\gamma) \) where the equation of state is \(p_i = (\gamma - 1)\rho_i \), the interesting case however being \(\Gamma > 1 \) which is required for the field energy density to grow relative to the fluid allowing eventual domination \[11\].

The convergence of different fields to the same tracking solution does not in itself amount to assisted quintessence, as the fields are not generating any gravitational effect on the background evolution. The convergence does however set up the initial conditions for such a behaviour. What is mainly of interest is what happens once the energy density of the fields, all evolving together, is no longer subdominant, and that is the situation addressed in the rest of this paper. We will therefore be considering the full Friedmann equation

$$H^2 = \frac{8\pi}{3m_{Pl}^2} \left(\rho_f + \sum_i \rho_{\phi_i} \right)\,,$$ \hspace{1cm} (4)$$

where \(\rho_{\phi_i} \equiv V_i(\phi_i) + \dot{\phi}_i^2/2 \) and we assume spatial flatness throughout.

III. EXPONENTIAL POTENTIALS

We consider two fields \(\phi_1 \) and \(\phi_2 \) each with a separate exponential potential

$$V(\phi_1, \phi_2) = A e^{-\lambda_1 \kappa \phi_1} + B e^{-\lambda_2 \kappa \phi_2}\,,$$ \hspace{1cm} (5)$$

$$\equiv V_1(\phi_1) + V_2(\phi_2)\,,$$

where \(\kappa^2 \equiv 8\pi/m_{Pl}^2 \). For generality, we will allow the potentials to have different slopes.

A. Assisted quintessence solutions

For the case where no matter is present, this system is exactly the original assisted inflation scenario of Liddle et al. \[3\], where the multiple fields evolve to give dynamics matching a single-field model with

$$\frac{1}{\lambda_{eff}^2} = \frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2}\,.$$ \hspace{1cm} (6)$$

For a single-field potential \(V(\phi) = V_0 e^{-\lambda_3 \kappa \phi} \) the scale factor evolves as \(a \propto t^p \), where \(p = 2/\lambda_3^2 \). Then the multi-field case Eq. (6) corresponds to an effective power-law index given by \(p_{eff} \equiv 2/\lambda_{eff}^2 \equiv \sum p_i \). The expansion rate is therefore more rapid the more fields there are. A particularly comprehensive analysis of multiple fields in exponential potentials has been given by Collinucci et al. \[12\].

As it happens, this assisted behaviour continues to be valid in the presence of a perfect fluid with equation of state \(p = (\gamma - 1)\rho \). This was first noted by Coley and van den Hoogen \[5\], who also allowed for the possibility of spatial curvature. This is because the method used to relate multi-field dynamics to an equivalent single-field dynamics in Ref. \[3\] is a property of the scalar field sector alone, being valid in the presence of any other matter sources.

B. Critical points and stability

The critical points for this system were classified by Coley and van den Hoogen \[5\], and we will reiterate their results only briefly before embarking on some numerical analysis of the evolution towards them. In Ref. \[3\], spatial curvature was included as a degree of freedom and the fluid assumed to have \(\gamma > 1 \), whereas we assume spatial flatness and \(\gamma \) in the wider range \(0 \) to \(2 \).

To study the critical point structure and stability of the system, it is convenient to introduce the following dimensionless quantities \[13\]

$$x_i = \frac{\kappa \dot{\phi}_i}{\sqrt{6} H}, \quad y_i = \frac{\kappa \sqrt{V_i}}{\sqrt{3} H} \quad i = 1, 2\,.$$ \hspace{1cm} (7)$$

Then we obtain
TABLE I: The properties of the critical points in the presence of a barotropic fluid with $0 < \gamma < 2$. There are seven discrete points, while Case 2 corresponds to a circle of points parametrized by an angle θ. Case 2 is neutrally stable along the circle, but always unstable in at least one other direction. The last two columns show the effective energy density and equation of state of the two scalar fields combined.

<table>
<thead>
<tr>
<th>Case</th>
<th>x_1</th>
<th>y_1</th>
<th>x_2</th>
<th>y_2</th>
<th>Existence</th>
<th>Stability</th>
<th>Ω_ϕ</th>
<th>γ_ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>All λ_1, λ_2, γ</td>
<td>unstable</td>
<td>0</td>
<td>Undefined</td>
</tr>
<tr>
<td>2</td>
<td>$\cos \theta$</td>
<td>0</td>
<td>$\sin \theta$</td>
<td>0</td>
<td>All</td>
<td>unstable</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$\lambda_1/\sqrt{6}$</td>
<td>$(1 - \lambda_1^2/6)^{1/2}$</td>
<td>0</td>
<td>0</td>
<td>$\lambda_1^2 < 6$</td>
<td>unstable</td>
<td>1</td>
<td>$\lambda_1^2/3$</td>
</tr>
<tr>
<td>4</td>
<td>$\sqrt{6}\gamma/2\lambda_1$</td>
<td>$[3(2 - \gamma)\gamma/2\lambda_1^2]^{1/2}$</td>
<td>0</td>
<td>0</td>
<td>$\lambda_2^2 > 3\gamma$</td>
<td>unstable</td>
<td>3γ/λ_1^2</td>
<td>γ</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>$\lambda_2/\sqrt{6}$</td>
<td>$(1 - \lambda_2^2/6)^{1/2}$</td>
<td>$\lambda_2^2 < 6$</td>
<td>unstable</td>
<td>1</td>
<td>$\lambda_2^2/3$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{6}\gamma/2\lambda_2$</td>
<td>$[3(2 - \gamma)\gamma/2\lambda_2^2]^{1/2}$</td>
<td>$\lambda_2^2 > 3\gamma$</td>
<td>unstable</td>
<td>3γ/λ_2^2</td>
<td>γ</td>
</tr>
<tr>
<td>7</td>
<td>$\lambda_{\text{eff}}/\sqrt{6}\lambda_1$</td>
<td>$\lambda_{\text{eff}}/\lambda_1 (1 - \lambda_{\text{eff}}^2/6)^{1/2}$</td>
<td>$\lambda_{\text{eff}}^2/\sqrt{6}\lambda_2$</td>
<td>$\lambda_{\text{eff}}^2 (1 - \lambda_{\text{eff}}^2/6)^{1/2}$</td>
<td>$\lambda_{\text{eff}}^2 < 6$</td>
<td>stable for $\lambda_{\text{eff}}^2 < 3\gamma$</td>
<td>1</td>
<td>$\lambda_{\text{eff}}^2/3$</td>
</tr>
<tr>
<td>8</td>
<td>$\sqrt{6}\gamma/2\lambda_1$</td>
<td>$[3(2 - \gamma)\gamma/2\lambda_1^2]^{1/2}$</td>
<td>$\sqrt{6}\gamma/2\lambda_2$</td>
<td>$[3(2 - \gamma)\gamma/2\lambda_2^2]^{1/2}$</td>
<td>$\lambda_{\text{eff}}^2 > 3\gamma$</td>
<td>stable</td>
<td>3$\gamma/\lambda_{\text{eff}}^2$</td>
<td>γ</td>
</tr>
</tbody>
</table>

\[
\frac{dx_i}{dN} = -3x_i + \lambda_i \sqrt{\frac{3}{2} y_i^2 + \frac{3}{2} x_i^2 [2x_i^2 + 2x_2^2 + \gamma(1 - x_1^2 - y_1^2 - x_2^2 - y_2^2)]} \\
\frac{dy_i}{dN} = -\lambda_i \sqrt{\frac{3}{2} x_i y_i + \frac{3}{2} y_i [2x_i^2 + 2x_2^2 + \gamma(1 - x_1^2 - y_1^2 - x_2^2 - y_2^2)]} \\
\frac{1}{H} \frac{dH}{dN} = -\frac{3}{2} [2x_i^2 + 2x_2^2 + \gamma(1 - x_1^2 - y_1^2 - x_2^2 - y_2^2)] ,
\]

where $N \equiv \ln a$, together with the constraint

\[
x_1^2 + y_1^2 + x_2^2 + y_2^2 + \frac{\kappa^2 \rho f}{3H^2} = 1 .
\]

We define the density parameters Ω_ϕ, and the equation of state w_{ϕ_i} for scalar fields, as

\[
\Omega_\phi = x_i^2 + y_i^2 , \quad w_{\phi_i} = x_i^2 - y_i^2 \\
= \frac{x_i^2 - y_i^2}{x_i^2 + y_i^2} , \quad i = 1, 2 .
\]

We note that the density parameter for matter is given by $\Omega_m = \frac{\kappa^2 \rho f}{3H^2} = 1 - \Omega_\phi - \Omega_{\phi_2}$ from Eq. (11).

These equations are in fact valid for any uncoupled potentials, with λ_i defined by

\[
\lambda_i = -\frac{1}{\kappa V_i} \frac{dV_i}{d\phi_i} .
\]

Our case of exponential potentials corresponds to λ_i both constant. It is straightforward to extend our analysis to the case of a dynamically changing λ as studied in single-field models in Ref. [14].

The classification of critical points and their stability is given in Table I and agrees with results in Ref. [5].

There are eight types of critical point, seven being discrete points and one a circular locus of critical points. They are readily compared to the five types of critical point found for the single-field system in Ref. [13]. Our cases 1, 2 with $\theta = 0$ and π, 3 and 4 correspond to the five points in the single-field case for the field ϕ_1, with ϕ_2 playing no role. Our cases 1, 2 with $\theta = \pi/2$ and $3\pi/2$, 5 and 6 are the same solutions for the ϕ_2 field. Finally, cases 7 and 8 are critical points in which both fields play a role, and which have no direct analogue with the single-field case.

In the single-field case, the stable late-time attractor is either scalar-field dominated (case 3 or 5) or a scaling solution (case 4 or 6) depending on the relative values of λ and γ [13]. Once a second field is added, the new degrees of freedom always render those solutions unstable. The late-time attractors instead become either the assisted scalar-field dominated solution case 7 (for $\lambda_{\text{eff}}^2 < 3\gamma$) or the assisted scaling solution case 8 (for $\lambda_{\text{eff}}^2 > 3\gamma$).

To compare our results with Ref. [3], we note that under their assumptions the curvature always dominates the kinetic energy [9], where the late-time behaviour is domination by the phantom field.

1 We note that a full analysis has also been carried out for the case where one of the fields is of phantom type (opposite sign of the kinetic energy) [9], where the late-time behaviour is domination by the phantom field.
FIG. 1: A numerical integration for the case \(\lambda_1 = 2, \lambda_2 = 1.8 \) and \(\gamma = 1, \) with initial conditions chosen so that \(\phi_1 \) dominates. Field 1 is in solid and field 2 dashed. The solution initially approaches the single-field scaling solution (case 4), but this becomes unstable once the second field becomes important, the late-time attractor being the multi-scalar-field dominated accelerating solution (case 7, \(\lambda_{\text{eff}} = 1.34 \)). The dotted line shows \(-q = \ddot{a}/aH^2\), where \(q \) is the deceleration parameter.

fluid at late times, and behaves like a \(\gamma = 2/3 \) fluid. Accordingly, they always find solutions with non-zero fluid density to be unstable to eventual curvature domination, whereas our assumption of spatial flatness renders them stable. Otherwise, the classification and stability shown in our Table matches their Tables I and III. Additionally, they correctly describe the spatially-flat case in their text.

C. Multi-field phenomenology

For the exponential potential, the assisted quintessence phenomenon does indeed exist, with the extra fields being equivalent to a flatter single-field potential. Unfortunately this result does not seem particularly useful phenomenologically, as the scaling solutions do not give acceleration as required by observations, while the scalar-field dominated solutions would long ago have made the matter density negligible.

There is however one scenario that might be of interest, which is to imagine there are a large number of exponential potentials with different initial conditions. As the Universe evolves, more and more fields would join the assisted quintessence attractor, reducing \(\lambda_{\text{eff}} \). Eventually, this could switch the attractor from the scaling regime \(\lambda_{\text{eff}}^2 > 3\gamma \) into the regime of late-time scalar field dominance \(\lambda_{\text{eff}}^2 < 3\gamma \) [5].

Figure 2 shows a two-field example of such evolution, with the single-field scaling solution becoming unstable as the second field becomes important, switching the evolution into late-time scalar field domination. From Table I the first scaling regime corresponds to case 4 \((x_1 = y_1 = \sqrt{3/8}, x_2 = y_2 = 0)\) with no acceleration, whereas the final stable attractor is case 7 \((x_1 = 0.365, y_1 = 0.560, x_2 = 0.406, y_2 = 0.623)\) with acceleration. We checked that the values of the fixed points agree very well with numerical results.

However even if the initial conditions were fine-tuned to bring this transition into the recent past, it is hard to see how the equation of state \(w \) could reach a sufficiently-negative value to be observationally viable, current observations indicating roughly \(w \equiv \gamma - 1 < -0.8 \) [2]. In fact, if we compare the two-field scenarios with a single-field scenario in which an accelerated expansion occurs at late times \((\lambda < \sqrt{2})\), we find that typically the two-field models give a larger present value of \(w \) (here \(w \) is the
IV. INVERSE POWER-LAW POTENTIALS

We now consider the inverse-power law case $V(\phi) = V_0 \phi^{-\beta}$, where we will take the same exponent and normalization for each field. Here one might hope that the assisted phenomenon would give rise to an effective β_{eff} which is smaller than the individual β, so that observationally-viable models can be achieved in steeper potentials than the single-field case. Unfortunately that turns out not to be true, as we now see.

These potentials are favoured because they exhibit tracker solutions, and it is therefore legitimate to suppose that after some early time we can take $\phi_1 = \phi_2 = \ldots = \phi$. The Friedmann and scalar wave equations become

$$H^2 = \frac{8\pi}{3m^2_{\text{Pl}}} \left(\rho_i + nV_0 \phi^{-\beta} + \frac{n}{2} \dot{\phi}^2 \right),$$
$$\ddot{\phi} = -3H\dot{\phi} - \frac{dV}{d\phi},$$

where n is the number of fields. This is not yet equivalent to a single-field model, but can be made so (loosely following the method of Ref. [3]) by the redefinitions

$$\chi = \sqrt{n} \phi \quad ; \quad W_0 = \sqrt{n^2} V_0,$$

which then gives the equations of a single-field model with potential $W(\chi) = W_0 \chi^{-\beta}$.

This rescaling indicates that the assisted behaviour renormalizes the amplitude of the potential in this case, but does not renormalize its exponent. In such models the amplitude has to be adjusted in order to give the present-day value of the matter density Ω_m, and having done that the multi-field system then has identical dynamics to the single-field model, in particular predicting the same present-day value of the equation of state w.

V. ASSISTED QUINTESSENCE DYNAMICS

We end with a more general construction for analyzing assisted quintessence, extending the analysis of the previous section to the case where the potential is arbitrary, but the same for all fields. Again we assume tracking behaviour so that we can take $\phi_i = \phi$, giving

$$H^2 = \frac{8\pi}{3m^2_{\text{Pl}}} \left[\rho_i + nV(\phi) + \frac{n}{2} \dot{\phi}^2 \right],$$
$$\ddot{\phi} = -3H\dot{\phi} - \frac{dV}{d\phi}.$$

To find an equivalent single-field system, we first note that the kinetic term in the Friedmann equation forces the correspondence

$$\chi = \sqrt{n} \phi.$$

The equations can then be transformed into single-field form with potential

$$W(\chi) = nV(\chi/\sqrt{n}),$$

which obviously has the desired effect in the Friedmann equation, but which also renders the fluid equation into single-field form. This formula therefore represents an algorithm correctly reproduces Eq. (6) for the case

$$\Gamma_W = WW''/W'^2 \quad \text{is equal to} \quad \Gamma_V = VV''/V'^2 \quad \text{(the primes here being derivatives wrt the arguments χ and ϕ respectively).}$$

As a final point, we note that under the correspondence Eq. (20), the tracking parameter $\Gamma_W = WW''/W'^2$ is equal to $\Gamma_V = VV''/V'^2$ (the primes here being derivatives wrt the arguments χ and ϕ, respectively). As one would expect, the tracking conditions on the multi-field model and its single-field dynamical equivalent are the same.
VI. CONCLUSIONS

We have studied various aspects of assisted quintessence dynamics. Such dynamics arises naturally if there are several fields with the same potential, provided the potential exhibits tracking behaviour for at least some stage of its early evolution.

Our most powerful result is Eq. (20), which provides a general algorithm for finding a single-field model which mimics the dynamics of a multi-field assisted quintessence model. Applied to inverse power-law models, it shows that they are the unique (monotonic) potentials for which there is no assisted behaviour, the collection of fields behaving as a single field in the same potential (up to overall normalization). All other potentials will exhibit assisted behaviour, the exponential potential being an explicit example.

It should be possible to extend our analysis to the case of more general dark energy models in which the Lagrangian includes non-canonical kinematic terms, such as the tachyon, k-essence and ghost condensate. For the potential being an explicit example. All other potentials provide a general algorithm for finding a single-field model least some stage of its early evolution.

It is interesting that the multi-field system can be analyzed so simply. Regrettably, however, we have not uncovered any scenarios where the assisted quintessence phenomenon appears to improve the situation with regard to the observations. In fact our results show the contrary; in potentially the most interesting scenario of the inverse power-law it turns out that there is no assisted quintessence effect.

Acknowledgments

S.A.K. was supported by the Korean government, A.R.L. by PPARC, and S.T. by JSPS (No. 30318802).